
4 Language Models – Hidden Markov Models

4.1 Computing the parameters of a model

Given the following sequences of pairs (state,emission):

(D,the) (N,wine) (V,ages) (A,alone)
(D,the) (N,wine) (N,waits) (V,last) (N,ages)
(D,some) (N,flies) (V,dove) (P,into) (D,the) (N,wine)
(D,the) (N,dove) (V,flies) (P,for) (D,some) (N,flies)
(D,the) (A,last) (N,dove) (V,waits) (A,alone)

1. Draw the graph of the resulting bigram HMM, and list all non-zero model parameters
that we can obtain via MLE from this data.

2. Draw the graph of the resulting trigram HMM, and list all non-zero model parameters
that we can obtain via MLE from this data.

3. Compute the probability of the following sequence according to each of the two
previous models:
(D,the) (N,dove) (V,waits) (P,for) (DT,some) (A,last) (N,wine)

4.2 The Viterbi Algorithm in log-space

In this exercise we will modify the Viterbi algorithm used to compute the most likely state
sequence in HMMs. Recall that we can specify an HMM model as µ = (A,B, π), where A
is a matrix of transition parameters, B is a matrix of emission parameters, and π is the
initial state distribution.

Let’s first recall the computations behind basic Viterbi. Given an observation sequence
O = O1 . . . OT the algorithm computes:

argmax
X=X1...XT

Pµ(X | O) = argmax
X

Pµ(X,O)

Pµ(O)
= argmax

X
Pµ(X,O)

The algorithm proceeds by defining quantities δj(t), which keep track of the most likely
way of being at state Xj after emmitting O1 . . . Ot. In parallel, the algorithm also computes
variable ψj(t), which store the transitions that lead to the most likely state sequence. The
computations are as follows:

1. Initialization: ∀j = 1 . . . N : δj(1) = πjbjo1 ; ψj(1) = 0 ;

2. Induction: ∀t = 1 . . . T, ∀j = 1 . . . N :

δj(t+ 1) = max
1≤i≤N

δi(t)aijbjot+1 ; ψj(t+ 1) = argmax
1≤i≤N

δi(t)aij ;

3. Termination: backwards path readout.

X̂T = argmax
1≤i≤N

δi(T ) ; ∀t = 1..T − 1 : X̂t = ψX̂t+1
(t+ 1) ; P (X̂) = max

1≤i≤N
δi(T ) ;

6



Moving to log-space

We are now interested in working in the logarithmic space. That is, we want to redefine the
computations so that Viterbi computes log(Pµ(X,O)) instead of Pµ(X,O). This extension
is important in tasks where probabilities of individual emissions or transitions may be very
small, such as in NLP applications where the number of symbols is usually very very large.
If individual probabilities are small then products of such probabilities will be very very
very small. In such cases, our machines may run out of precision, hence yielding unreliable
computations. Working in the log space is a common “trick” that solves the problem. We
still want the most likely sequence under µ, but we will compute it as:

argmax
X=X1...XT

Pµ(X | O) = argmax
X

log(Pµ(X | O))

= argmax
X

log

(
Pµ(X,O)

Pµ(O)

)
= argmax

x
log(Pµ(X,O))− log(Pµ(O))

= argmax
x

log(Pµ(X,O))

First of all, note that even if we compute log probabilities instead of normal probabilities,
the most likely sequence will be the same. This is because the log function preserves the
value of the state sequence attaining the maximum probability. Second, as before, we can
drop the term log(Pµ(O)) because O is fixed, and it does not affect the maximum.

Let’s assume that the HMM is given in the log-space. That is, µ′ = (A′, B′, π′) where

• For any states i and j: a′ij = log aij = logP (Xt+1 = sj | Xt = si)

• For any state i and symbol k: b′ik = log bik = logP (Ot = k | Xt = si)

• For any state i: π′i = log πi = logP (X1 = i)

Questions:

1. Write log(Pµ(X,O)) in terms of µ′.

2. Rewrite the recursive expressions for δ and ψ to work with log probabilities.

4.3 Error-augmented Viterbi

In this question we will modify Viterbi to account for a notion of Hamming error of state
sequences. In future lectures we will see applications of this algorithm.

7



Let X and X ′ be two state sequences of length T . We define an error function that
counts the number of different states (also known as Hamming error):

error(X,X ′) =
T∑
i=1

I[Xi 6= X ′i]

where the function I[p] is an indicator function that returns 1 if predicate p is true and 0
otherwise. For example, error(”abc”, ”acb”) = 2.

For this problem, the input will consist of an observation sequence O together with its
correct state sequence X∗. The goal is to find the most-erroneous sequence under an HMM
model specified by µ. That is, we are interested in finding a state sequence that has high
probability under our model and also has high error. More formally, we would like to find:

argmax
X

log(P (X,O)) + λ · error(X∗, X)

where the parameter λ controls the trade-off between the two terms (high values give more
importance to the error).

Question:

1. Modify the Viterbi algorithm to solve this problem.

HINT: Note that the error function decomposes in a similar fashion to the computa-
tions behind an HMM. Then think of the optimality conditions behind the design of
Viterbi that allow us to compute δ and ψ recursively.

8


