Exercises

Statistical Processing of Natural Language

2015

1.1

1.2

Introduction

Preliminaries: Linux tools for handling texts.

If you are not familiar with Linux commands such as: grep, sort, uniq, head, tail,
cut, paste, gawk, etc. check their manpages and get acquainted with them. You can
get a good introduction following the exercises in:

K.W. Church, Uniz For Poets
http://www.lsi.upc.edu/ padro/Unixforpoets.pdf

NOTE: Modern Linux commands may differ in some option flags or parameters from
examples used in this tutorial. If you find problems, check the command manpage to
find out the right parameters or options.

Zipf’s Laws

. Write a program to check Zipfs first law (f = K/r) on a real corpus: Count word

frecuencies, sort them by rank, and plot the curve.

Compute the proportionality constant (K) between rank and frequency for each
word. Compute its average and deviation. Discuss the results. Are they consistent
with Zipfs Law?

NOTE: Use the text files corpus/en.txt and corpus/es.txt

2 Language Models — Entropy

1. Complete the python program entro.py to estimate the entropy of a language from
a given input text, using:

(a) Order zero (unigrams): Z p(z) log p(z

(b) Order 1 (bigrams): Zp Zp ylx) log p(y|x)

(c¢) Order 2 (trigrams): Zp Zp(y[m) Zp(z\:cy) log p(z|zy)
Yy z

3 Language Models — MLE & Smoothing

1.

(a)

The probability P(x) of an event x smoothed using Absolute Discount (AD) is:

%NX)—J if count(X) >0
Pap(X) =
w otherwise

Derive an Absolute Discount smoothing formula for the conditional probability
of a trigram P(z|zy), such that when no counts of order n are available, condi-
tional probability of (n — 1)-gram is recursively used, also with AD smoothing.

The probability P(x) of an event x smoothed using Linear Discount (LD) is:

U=ajeountX) £ count(X) > 0

PLD(X) =

N otherwise

Derive a Linear Discount smoothing formula for the conditional probability of a
trigram P(z|zy), such that when no counts of order n are available, conditional
probability of (n — 1)-gram is recursively used, also with LD smoothing.

Complete the python program mle.py to estimate via MLE the parameters of
a character trigram model, and write them to a file.

Complete the program generate.py to generate a random sequence of charac-
ters consistent with the loaded trigram model.

Run the program smooth.py and enter different input sentences. Discuss why
some sentences have zero probability. Modify the program smooth.py to per-
form a simple smoothing via Lidstone’s or Laplace’s Law. Discuss the values
chosen for N and B.

Extend the program mle.py to estimate the coefficients for a linear Interpolation
smoothing. Write the coefficients into the first line of the model file, followed
by the trigram parameters.

Linear Interpolation: P(z|zy) = M\ P(z) + A P(z|y) + A\3P(z|zy)
Coefficient estimation via deleted interpolation:

)\1=)\2=)\3=O
foreach trigram zyz with count(xyz) > 0

depending on the maximum of the following three values:
count(z)—1
N—-1

count(yz)—1
count(y)—1
count(ryz)—1
count(zy)—1
normalize A;, Ay, A3

case increment \; by count(xyz)

case increment Ay by count(xyz)

case increment A3 by count(xyz)

(b) Extend the program smooth.py to load the Linear Interpolation coefficients in
the first line of the file, and use them to smooth the trigram probabilitites.
Compare the results with the smoothing obtained in the previous exercise.

4 Language Models — Hidden Markov Models

4.1 Computing the parameters of a model

Given the following sequences of pairs (state,emission):

(D,the) (N,wine) (V,ages) (A,alone)

(D,the) (N,wine) (N,waits) (V,last) (N,ages)
(D,some) (N,flies) (V,dove) (P,into) (D,the) (N,wine)
(D,the) (N,dove) (V,flies) (P,for) (D,some) (N,flies)
(D,the) (A,last) (N,dove) (V,waits) (A,alone)

1. Draw the graph of the resulting bigram HMM, and list all non-zero model parameters
that we can obtain via MLE from this data.

2. Draw the graph of the resulting trigram HMM, and list all non-zero model parameters
that we can obtain via MLE from this data.

3. Compute the probability of the following sequence according to each of the two

previous models:
(D,the) (N,dove) (V,waits) (P,for) (DT,some) (A,last) (N,wine)

4.2 The Viterbi Algorithm in log-space

In this exercise we will modify the Viterbi algorithm used to compute the most likely state
sequence in HMMs. Recall that we can specify an HMM model as p = (A, B, 7), where A
is a matrix of transition parameters, B is a matrix of emission parameters, and 7 is the
initial state distribution.

Let’s first recall the computations behind basic Viterbi. Given an observation sequence
O = Oy ...Or the algorithm computes:

P.(X,0)
aremax P,(X | O) = argmax 4~~~
X=§(1...XT H(|) gX PH(O)

The algorithm proceeds by defining quantities ,(¢), which keep track of the most likely
way of being at state X after emmitting O ... O,. In parallel, the algorithm also computes
variable v,(t), which store the transitions that lead to the most likely state sequence. The
computations are as follows:

1. Initialization: Vj=1...N: 0,;(1) = m;bjo, ;. ¥;(1) =0;
2. Induction: Vt=1...T, Vj=1...N:
5i(t+1) =

= argmax P, (X, O)
X

192;}}(\[0;i(t)aibjo,,, 5 ¥;(t+ 1) = argmax 6;(t)a;; ;

1<i<N

3. Termination: backwards path readout.

Xp =argmax§;(T); Vt=1.T—1: X, =¢g (t+1); P(X)= max §(T);

1<i<N 1<i<N

Moving to log-space

We are now interested in working in the logarithmic space. That is, we want to redefine the
computations so that Viterbi computes log(P,(X, O)) instead of P, (X, O). This extension
is important in tasks where probabilities of individual emissions or transitions may be very
small, such as in NLP applications where the number of symbols is usually very very large.
If individual probabilities are small then products of such probabilities will be very very
very small. In such cases, our machines may run out of precision, hence yielding unreliable
computations. Working in the log space is a common “trick” that solves the problem. We
still want the most likely sequence under p, but we will compute it as:

argmax P,(X | O) = argmaxlog(P,(X | O))
X

o P,(X,0)
or)
= argmax log(P,(X,0)) —log(P,(0))

= argmaxlog (
X
= argmaxlog(P,(X,0))

First of all, note that even if we compute log probabilities instead of normal probabilities,
the most likely sequence will be the same. This is because the log function preserves the
value of the state sequence attaining the maximum probability. Second, as before, we can
drop the term log(P,(O)) because O is fixed, and it does not affect the maximum.

Let’s assume that the HMM is given in the log-space. That is, u/ = (A’, B', ") where

e For any states i and j: aj; = loga;; = log P(X;11 = s; | X; = s;)
e For any state ¢ and symbol k: b, = logb;, = log P(O; =k | X; = s;)
e For any state i: 7, = logm; = log P(X; = 1)

Questions:

1. Write log(P,(X,0)) in terms of p'.

2. Rewrite the recursive expressions for 6 and v to work with log probabilities.

4.3 Error-augmented Viterbi

In this question we will modify Viterbi to account for a notion of Hamming error of state
sequences. In future lectures we will see applications of this algorithm.

Let X and X’ be two state sequences of length 7. We define an error function that
counts the number of different states (also known as Hamming error):

T
error(X, X') = ZI[Xi # X

i=1

where the function I[p] is an indicator function that returns 1 if predicate p is true and 0
otherwise. For example, error(”abc”,” ach”) = 2.

For this problem, the input will consist of an observation sequence O together with its
correct state sequence X*. The goal is to find the most-erroneous sequence under an HMM
model specified by . That is, we are interested in finding a state sequence that has high
probability under our model and also has high error. More formally, we would like to find:

argmax log(P(X,0)) + A - error(X™, X)
X

where the parameter A controls the trade-off between the two terms (high values give more
importance to the error).
Question:
1. Modify the Viterbi algorithm to solve this problem.
HINT: Note that the error function decomposes in a similar fashion to the computa-

tions behind an HMM. Then think of the optimality conditions behind the design of
Viterbi that allow us to compute § and ¥ recursively.

5 Supervised Methods — Max. Entropy Classifiers

1. (a) Use the encoded corpus corpus/efe/f50/train.0 to learn a Maximum Entropy
Model using the megam i686.opt executable:
./megam_i686.opt -quiet -fvals multiclass corpus/efe/f50/train.f0 > £50.mem

(b) Test the performance of the module running megam in test mode on the corpus
corpus/efe/£f50/test.f0,:
./megam_i686.opt -fvals -predict £50.mem multiclass corpus/efe/f50/test.f0 >out

(c) Complete the program classifier.py to compute the probability of each class
for each input example, and produce the same output than megam test mode.
Use the correct answer in the test files to compute the accuracy statistics.

2. (a) Modify the program classifier.py to output not only the most likely class,
but all classes with a probability over a given threshold. Modifiy the evaluation
to compute also precision, recall, and F1. Check how results vary depending on
the given threshold.

(b) Train and test a classifier using the corpus corpus/efe/f100/train.f0 for
training and the corpus corpus/efe/f100/test.f0 for testing. Compare the
performance of this classifier with that of the classifier obtained in the previous
exercise using corpus £50. Perform a paired hypothesis test to find out whether
the difference is statistically significant.

(c) Perform a cross-validation evaluation for the same cases above, using corpus
corpus/efe/f50/train.* and corpus/efe/f50/test.* to train and test five
folds of one classifier, and corpus/efe/f100/train.* and corpus/efe/f100/test . *
for the other. Discuss the changes in the statistical significance of the difference
between both models.

6 Clustering

1. Download the clustering package CLUTO:
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

2. Use the document collection provided in folder data, which is in the appropriate

format for CLUTO.

3. Execute the program vcluster, requesting 13 clusters, and using single-link:

vcluster -clmethod=agglo -crfun=slink docs 13

Analyze the output and statistics provided by CLUTO.

4. Execute again the program textttvcluster, using complete-link.
vcluster -clmethod=agglo -crfun=clink docs 13
What can we say about the results?

5. Complete the program pip.py to compute purity and inverse purity of the produced
clustering with respect to the original classification of the documents.

6. Use program pip.py to compute purity and inverse purity of the clusterings produced
by CLUTO using different parameter settings.
paste classes doc.clustering.13 | python pip.py

Test different clustering methods (option -clmethod with values rb, agglo, bagglo,
graph), link strategies (option -crfun with values slink, clink, upgma), and simi-
larity measures (option -sim with values cos, dist, jacc)

Which parameter setting produces results more similar to the original classification?
What can we say about the used representation of documents? Is there a relation be-

tween purity and inverse purity and the internal/external similarity measures provided by
CLUTO ?

10

