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Named Entity Recognition

- ORG ORG TIME

QNT -
Corp. in 2006

y PER -
300 shares of Acme

x Jim bought

y PER PER - - LOC
x Jack London went to Paris
y PER PER - - LOC

x Paris Hilton went to London



Part-of-speech Tagging

y NNP NNP VBZ NNP
x Ms. Haag plays Elianti
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Sequence Prediction

Log-linear Models for Sequence Prediction

Structured Perceptron and SVMs



Sequence Prediction

> X = X1Xp...Xn are input sequences, x; € X

> y =y1y2...¥n are output sequences, y; €{1,...,L}

» Goal: given training data

learn a predictor x — y that works well on unseen inputs x

» What is the form of our prediction model?



Approach 1: Local Classifiers

?

Jack London went to Paris

Decompose the sequence into n classification problems:
» A classifier predicts individual labels at each position

yi= argmax w-f(x,1,1)
1 € {Loc, PER, -}

» f(x,1,1) represents an assignment of label 1 for x;
» w is a vector of parameters, has a weight for each feature of f
» Use standard classification methods to learn w



Approach 1: Local Classifiers

?

Jack London went to Paris

Decompose the sequence into n classification problems:
» A classifier predicts individual labels at each position

yi= argmax w-f(x,1,1)
1 € {Loc, PER, -}

» f(x,1,1) represents an assignment of label 1 for x;
» w is a vector of parameters, has a weight for each feature of f
» Use standard classification methods to learn w

> At test time, predict the best sequence by
a simple concatenation of the best label for each position



Indicator Features

» f(x,1,1) is a vector of d features representing label 1 for x;

(fi(x, i 1,... . f(x11,... . falx,i, 1))

» What's in a feature fj(x,1,1)7?
» Anything we can compute using x and i and 1
» Anything that indicates whether 1 is (not) a good label for x;
> Indicator features: binary-valued features looking at a single
simple property

. .y | 1 ifx{=London and 1 =LoC
f(x.1.1 _{ 0 otherwise

. v | 1 ifxiy; =went and 1l =LOC
fi(x,1.1) _{ 0 otherwise



More Features for NE Recognition

PER
Jack London went to Paris

In practice, construct f(x,1,1) by ...
» Define a number of simple patterns of x and i

current word x;

is x; capitalized?

x; has digits?

prefixes/suffixes of size 1, 2, 3, ...
is x; a known location?

is x; a known person?

» next word

» previous word

» current and next words
together

» other combinations

vV VvV VY VY

» Generate features by combining patterns with label identities 1
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PER PER -
Jack London went to Paris

In practice, construct f(x,1,1) by ...
» Define a number of simple patterns of x and i

current word x;

is x; capitalized?

x; has digits?

prefixes/suffixes of size 1, 2, 3, ...
is x; a known location?

is x; a known person?

» next word

» previous word

» current and next words
together

» other combinations

vV VvV VY VY

» Generate features by combining patterns with label identities 1

Main limitation: features can't capture interactions between labels!



Approach 2: HMM for Sequence Prediction

T[PEI{ TPER.PER
PER PER = = LOC
J J OPER. LonpoN J J J
Jack London went to Paris

» Define an HMM were each label is a state
» Model parameters:
» 71, . probability of starting with label 1
» Ty1/: probability of transitioning from 1 to 1/
» Oy : probability of generating symbol x given label 1

» Predictions:
p(x,y) =1y, Oy, x H Tyi13iOyixi
i>1
» Learning: relative counts + smoothing
» Prediction: Viterbi algorithm



Approach 2: Representation in HMM

T[PER TPI".R.PEI{
PER PER - -
J J O PER, LONDON J J
Jack London went to

LOC

|

Paris

» Label interactions are captured in the transition parameters

» But interactions between symbols and labels are quite limited!

> Only Oya,xa = p(xi | yl)
» Not clear how to exploit patterns such as:
> Capitalization, digits
> Prefixes and suffixes
» Next word, previous word
» Combinations of these with label transitions



Approach 2: Representation in HMM

T[PER TPI".R.PER
PER PER = = LOC
J J O PER, LONDON J J J
Jack London went to Paris

» Label interactions are captured in the transition parameters

» But interactions between symbols and labels are quite limited!
> Only Oya,xa = p(xi | yl)
» Not clear how to exploit patterns such as:
> Capitalization, digits
> Prefixes and suffixes
» Next word, previous word
» Combinations of these with label transitions

» Why? HMM independence assumptions:
given label yi, token x; is independent of anything else



Local Classifiers vs. HMM

LocAL CLASSIFIERS HMM
» Form: » Form:
w-f(x,1,1) Ty, OY1,X1 H TYi—ly)’iOYi:Xi
i>1

» Learning: standard classifiers

o . » Learning: relative counts
» Prediction: independent for _ g o
each x; » Prediction: Viterbi
» Advantage: feature-rich > Advantz?ge: label
interactions
» Drawback: no label _ _
interactions » Drawback: no fine-grained

features



Approach 3: Global Sequence Predictors

y: PER PER - - LOC
X: Jack London went to Paris

Learn a single classifier from x — y

predict(x1.n,) = argmaxw - f(x,y)
yeY™



Approach 3: Global Sequence Predictors

y: PER PER - - LOC
X: Jack London went to Paris

Learn a single classifier from x — y

predict(x1.n,) = argmaxw - f(x,y)
yeY"
But ...
» How do we represent entire sequences in f(x,y)?

» There are exponentially-many sequences y for a given x,
how do we solve the argmax problem?



Factored Representations

y: PER PER - - LOC
X: Jack London went to Paris

» How do we represent entire sequences in f(x,y)?



Factored Representations

y: PER PER - - LOC
X: Jack London went to Paris

» How do we represent entire sequences in f(x,y)?

» Look at individual assignments y; (standard classification)



Factored Representations

y: PER PER - - LOC
X: Jack London went to Paris

» How do we represent entire sequences in f(x,y)?

» Look at individual assignments y; (standard classification)
» Look at bigrams of outputs labels (yi_1,¥yi)



Factored Representations

y: PER PER - - LOC
X: Jack London went to Paris

» How do we represent entire sequences in f(x,y)?

Look at individual assignments y; (standard classification)
Look at bigrams of outputs labels (yi_1,yi)

Look at trigrams of outputs labels (yi_2,yi—1,¥i)

Look at n-grams of outputs labels (yi—ni1,...,¥i-1,¥i)
Look at the full label sequence y (intractable)

vV vy vy VvVYYy

> A factored representation will lead to a tractable model



Bigram Indicator Features

1 2 3 4 5
y PER PER - - LOC
x Jack London went to Paris

» Indicator features:

1 if x; ="London” and
fix,i,yi1,y1) = Yi—1 = PER and y; = PER
0 otherwise

e.g., fj(x,2,PER,PER) =1, fj(x,3,PER,-) =0



More Bigram Indicator Features

1 2 3 4 5
X Jack London went to Paris
y PER PER - - LOC
y’ PER LOC - - LOC
y” - - - LOC -
x' My trip to  London

fi(...) =1 iff x; ="London” and y; ; = PER and y; = PER
f,(...) =1 iff x; ="London” and y;_; = PER and y; = LOC
£3(...) =1 iff x;_; ~/(inltolat)/ and x; ~/[A-Z]/ and y; = LOC
f,(...) =1 iff y; =L0C and WORLD-CITIES(x;) = 1

f5(...) =1 iff y; = PER and FIRST-NAMES(x;) =1
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More Bigram Indicator Features

1 2 3 4 5

X Jack London went to Paris

y PER PER - - LOC

y' PER LOC - - LOC

y” - - - LOC -

x' My trip to  London
fi(...) =1 iff x; ="London” and y;_; = PER and y; = PER
f,(...) =1 iff x; ="London” and y;_; = PER and y; = LOC
£3(...) =1 iff x;_; ~/(inltolat)/ and x; ~/[A-Z]/ and y; = LOC
f,(...) =1 iff y; =L0C and WORLD-CITIES(x;) = 1
fs(...) =1 iff y; = PER and FIRST-NAMES(x;) =1




Representations Factored at Bigrams

y: PER PER - - LOC
X: Jack London went to Paris

» f(x,1,yi1,¥i)
» A d-dimensional feature vector of a label bigram at i
» Each dimension is typically a boolean indicator (0 or 1)

> fxy) =X fx Ly i)
» A d-dimensional feature vector of the entire y
» Aggregated representation by summing bigram feature vectors
» Each dimension is now a count of a feature pattern



Linear Sequence Prediction

predict(x1.,) = argmaxw - f(x,y)
yeY™
n
fx,y) =) flxiyi 1y
i=1

where



Linear Sequence Prediction

predict(x1.,) = argmaxw - f(x,y)
yeY™
n
fx,y) =) flxiyi 1y
i=1

where

» Note the linearity of the expression:

w-f(x,y) = W-Zf(X,i.YFLYi)

i=1

n
= ZW-f(X,i,Yiflei)

i=1



Linear Sequence Prediction

predict(x1.,) = argmaxw - f(x,y)
yeY™
n
fx,y) =) flxiyi 1y
i=1

where

» Note the linearity of the expression:

w-f(x,y) = W-Zf(X,i.YFLYi)

i=1
n
= ) w-f(x,iyi1,y)
i=1

» Next questions:

» How do we solve the argmax problem?
» How do we learn w?



Predicting with Factored Sequence Models

» Consider a fixed w. Given x7.,, find:

n
argmax Z w-f(x,1,yi-1,¥i)
yeY™ 1

» We can use the Viterbi algorithm, takes O(n|Y|?)

» Intuition: output sequences that share bigrams will share
scores
i—2 i—1 i i4+1

best subsequence with y;_1 = PER -. - +¢0)_a best subsequence with y; = PER

«

best subsequence with y;_; = LOC best subsequence with y; = LoC

best subsequence with yi_; = — il ¥ best subsequence with y; = —



Viterbi for Linear Factored Predictors

y—argmaxZw f(x,1,yi—1.¥1)
yeY™ i=1

v

Definition: score of optimal sequence for x1.; ending with
aey

di(a) = max Zw f(x,3,¥5-1.¥5)

yE‘zﬂ‘yt—a]

» Use the following recursions, for all a € Y:

61(a) = w-f(x,1,y0 =NULL, a)
di(a) = maxdi_1(b)+w-f(x,1,b,a)
bey

v

The optimal score for x is maxqey on(a)

v

The optimal sequence § can be recovered through pointers



Linear Factored Sequence Prediction

predict(x1.,) = argmaxw - f(x,y)
yeyn
Factored representation, e.g. based on bigrams
Flexible, arbitrary features of full x and the factors

Efficient prediction using Viterbi

vV Yy VY Yy

Next topic: learning w:

» Maximum-Entropy Markov Models (local)
Conditional Random Fields (global)
Structured Perceptron (global)
Structured SVM (global)

v vy



Outline

Sequence Prediction

Log-linear Models for Sequence Prediction

Structured Perceptron and SVMs



Sequence Tagging with Log-Linear Models

v

x are input sequences (e.g. sentences of words)

v

y are output sequences (e.g. sequences of NE tags)

» Goal: given training data
{(X(l),y(l))’ (x(@,y@), .., (X(m),y(m))}
learn a model x — y

» Log-linear models:

_ exp{w - f(x, y)}
argmax P(ylx;w) = —Zew
yeEY* (x; w)
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Sequence Tagging with Log-Linear Models

v

x are input sequences (e.g. sentences of words)

v

y are output sequences (e.g. sequences of NE tags)

v

Goal: given training data
{(X(l),y(l))’ (x(@,y@), .., (X(m),y(m))}
learn a model x — y

v

Log-linear models:

_ exp{w - f(x, y)}
argmax P(ylx;w) = —Zew
yeEY* (x; w)

v

Exponentially many y's for a given input x
Solution 1: decompose P(y | x) (MEMMs)
Solution 2: decompose f(x,y) (CRFs)

v

v



Maximum Entropy Markov Models (MEMMs)

(McCallum, Freitag, Pereira '00)
» Notation: X1.n, = X1...X,
» Similarly to HMMs:
P(yin [ X1m) = Ply1|x1n) X P(y2:n | X1, ¥1)

n
= Ply1lxim) x HP YilX1m, y1i-1)

=

= Y1|X1 mn) X H P( Y1|x1:n« Yi—l)

i=

» Assumption under MEMMs:

P(yilxin, y1:i-1) = P(yilx1:n, yi—1)



Sequence Tagging: MEMMs

» Decompose tagging problem:

n

P(yinm | x1m) = Plyilxen) x [ [Pyilxun, i yi1)
=2

» Learn local log-linear distributions (i.e. MaxEnt)

exp{w - f(x,1,y’,y)}
Z(x,1,y')

plylxiy’) =

where

> X is an input sequence

» y and y’ are tags

» f(x,1,y’,y) is a feature vector of x, the position to be tagged,
the previous tag and the current tag



Decoding with MEMMs

» Given w, given x, find:

n
argmaxPr(y | x;w) = amaxH Pr(yi | x,yi-1)
yed Y oia
_ [T expiw - £(x, 1, yi—1,¥i)}
= amax = .
y [ Z(x iw)

n
= ar’r;’axH exp{w - f(x, 1, yi—1,yi)}
i=1

mn
= an;axZ w-f(x,1,yi-1,¥1)

i=1

» We can use the Viterbi algorithm



Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)

» Log-linear model of the conditional distribution:

exp{w - f(x,y)}

Pr(ylx; w) = 7

where
> X =X1X>...X, € X*
y=v1y2...yn €Y and Yy ={1,... 1}
f(x,y) is a feature vector of x and y
w are model parameters

v vy

» To predict the best sequence

§ = argmax Pr(y|x)
yeY*
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Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)

» Log-linear model of the conditional distribution:

exp{w - f(x,y)}

Pr(ylx; w) = 7

where
> X =X1X>...X, € X*
y=v1y2...yn €Y and Yy ={1,... 1}
f(x,y) is a feature vector of x and y
w are model parameters

v vy

» To predict the best sequence

y = argmax Pr(y|x)
yeY*

» Exponentially many y's for a given input x
» Choose f(x,y) so that §¥ can be computed efficiently



Conditional Random Fields (CRFs)

» The model form is:

eXp{Z{l:l w- f(X, i'v Yi—1, YI)}
Z(x,w)

Priyx;w) =

where

Zexp{Zw f(x,1i,2i_1, zl)}

2€Y*

» Features f(...) are given (they are problem-dependent)
» w € RP are the parameters of the model

» CRFs are log-linear models on the feature functions



Conditional Random Fields: Three Problems

» Compute the probability of an output sequence y for x
Prylx; w)
» Decoding: predict the best output sequence for x

argmax Pr(y|x; w)
yeY*

» Parameter estimation: given training data

{(X(l),y(l)),(X(2J'y(2))'.__’(x(mJ'y(mJ)} '

learn parameters w



Decoding with CRFs

» Given w, given x, find:

exp{d> i, w-f(x,1yi—1,yi)}

argmax Pr(ylx;w) = amax
yeY* y Z(X W)
= amaxexp{Zw f(x,1,yi-1, yl)}
i=1

= amaxZw f(x,1,yi-1.yi)
i=1

» We can use the Viterbi algorithm



Viterbi for CRFs

..and MEMMs

v

n

Calculate in O(nL?):
a

y= rgmaxZ w-f(x, 1, yi-1,¥1)
yeyr i

v

Define (score of optimal sequence for x1.; ending with a € Y):
di(a) = max Zw f(x,3,¥5-1. ;)

yeY: yi=alTy
» Use the following recursions, for all a € Y:
81(a) = w-f(x,1,y9 =NULL, a)
di(a) = maxdi_1(b)+w-f(x,1,b,a)
bey

v

The optimal score for x is maxqey on(a)

v

The optimal sequence § can be recovered through pointers



Parameter Estimation in CRFs

v

Given a training set

estimate w

v

Define the conditional log-likelihood of the data:

1 m
L _ log Pr(v(K) (k);
(w) kg_l og Pr(y ™ x'™; w)

v

L(w) measures how well w explains the data. A good value
for w will give a high value for Pr(y®)x(¥): w) for all
k=1...m.

» We want w that maximizes L(w)



Learning the Parameters of a CRF

» Recall first lecture on log-linear / maximum-entropy models
» Find:

A
w* = argmaxL(w) ||lw||?

weRD 2

where

» The first term is the log-likelihood of the data

» The second term is a regularization term, it penalizes solutions
with large norm

» A is a parameter to control the trade-off between fitting the
data and model complexity



Learning the Parameters of a CRF

» Find
w* = argmax L(w) — =||w|?
weRP 2
> In general there is no analytical solution to this optimization
» We use iterative techniques, i.e. gradient-based optimization

1. Initialize w =0

2. Take derivatives of L(w) — %HWII% compute gradient
3. Move w in steps proportional to the gradient

4. Repeat steps 2 and 3 until convergence



Computing the gradient

m

oL(w) 1
_ 1Y xR k)
aw]- m ; )(X Y )
m
=) ) Priyk™iw) f(x,y)
k=1lyecy*
where n
flx,y) = Z f(x, L yi1,¥1)
i=1

» First term: observed mean feature value

» Second term: expected feature value under current w



Computing the gradient

» The first term is easy to compute, by counting explicitly
1 ¢ (k) (k)
—2 2 Gxiyiuy)
m -
k=1 i
» The second term is more involved,
m
> > Priyk™iw) Y fx™ 4y yi)
k=1lyely* i

because it sums over all sequences y € Y*



Computing the gradient

» For an example (x*), y(*)):

yeyYn 0 i=1
Z u]f(a,b)fJ (x® 1, a,b)
i=1a,beyY
where
ui(a,b) = > Pr(ylx™); w)

yeY™ : yi—1=a, yi=b

» The quantities Pllf can be computed efficiently in O(nL?)
using the forward-backward algorithm



Forward-Backward for CRFs

v

Assume fixed x. Calculate in O(nL?)

Hi(a,b) = > Priykw)  1<i<n;abe}y
yeEY™yia=ayi=b

» Define (forward and backward quantities):
aila) = ) eXp{Z}zlw-f(x,j,yjq,yj)}
yeYlyi=a
Bib) = Y e {ISTwtxit-Ly 1)

yey(n—i+ly, =b

v

Compute recursively «;(a) and i(b) (similar to Viterbi)

Z=) ,an(a)
i(a,b) ={ai—1(a) xexp{w - £(x,1, a,b)} * Bi(b) x Z71}

v

v



Compute the probability of a label sequence

Pr(yx, w) = Z(Xl_ - P {Zw (x4, yi_l,yi)}

1

where

Z(x;w) = Z eXp{ZW'f(X,i,ZilyZi)}

zeYyn i

» Compute Z(x; w) efficiently, using the forward algorithm



CRFs: summary so far

v

Log-linear models for sequence prediction, Pr(y|x; w)

v

Computations factorize on label bigrams
Model form:

v

argmax Z w-f(x, 1, yi-1,yi)

yEB* i

v

Decoding: uses Viterbi (from HMMs)
Parameter estimation:

» Gradient-based methods, in practice L-BFGS
» Computation of gradient uses forward-backward (from HMMs)

v



CRFs: summary so far

» Log-linear models for sequence prediction, Pr(y|x; w)
» Computations factorize on label bigrams
» Model form:

argmax ) w-£(x,1,yi-1, i)
yEH* i
» Decoding: uses Viterbi (from HMMs)
» Parameter estimation:
» Gradient-based methods, in practice L-BFGS
» Computation of gradient uses forward-backward (from HMMs)

» Next Questions: MEMMs or CRFs? HMMs or CRFs?



MEMMs and CRFs

n

MEMMs: Pr(y|x) =[] eXP{;V(;(fgxyyﬁ_yli_;), yi)}

i=1

W fxiyinyi
CRFs:  rly ) = 2 fo by v

MEMMs locally normalized; CRFs globally normalized

MEMM assume that Pr(y; | x1:n, ¥1:i—1) = Pr(yi | X1:n, yi—1)
Both exploit the same factorization, i.e. same features

Same computations to compute argmax, Pr(y | x)

MEMMs are cheaper to train

vV v vV V. VY

CRFs are easier to extend to other structures (next lecture)



HMMs for sequence prediction

v

x are the observations, y are the (un)hidden states
HMMs model the joint distributon Pr(x,y)
Parameters: (assume X ={1,...,k}and Y ={1,...,1})
» meRY 1 =Pr(yr = a)
» TERY™, Tqp =Pr(yi =blyio1 = a)
» O € RYX¥% Oqc = Pr(x; =clyi = a)

vy

» Model form
n
Prix,y) = 7ty Oy1.x; H Ty 15 Oyix
i=2
» Parameter Estimation: maximum likelihood by counting

events and normalizing



HMMs and CRFs

» In CRFs: § =amaxy Y ;w-f(x,1,yi—1,¥i)

» In HMMs:
¥ = amaxy 7y, Oy, x, H{L:2 TYi—TlLinOYirxi
= amaxy IOg(T[Yl O}’1,X1) + Zi:2 |og(TYi71,YiOYLXi)

» An HMM can be ported into a CRF by setting:
fj(X, i,y,yl) ‘ Wj
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HMMs and CRFs

» In CRFs: § =amaxy Y ;w-f(x,1,yi—1,¥i)

» In HMMs:
¥ = amaxy 7y, Oy, x, H{L:2 TYi—TlLinOYirxi
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i=1&y ' =a log(7tq)
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HMMs and CRFs

» In CRFs: § =amaxy Y ;w-f(x,1,yi—1,¥i)
» In HMMs:
¥ = amaxy 7y, Oy, x, H{L:2 Ty 1.3 Oyixi

= amaxy IOg(T[Yl O}’1,X1) + Z?:2 |Og(TYi71,YiOYLXi)

» An HMM can be ported into a CRF by setting:

fj (X, i,y,yl) ‘ W]'
i=1&y ' =a log(7tq)
i>1&y=a&y =b| log(Tav)
y=a&x=c log(Oq,p)

» Hence, HMM parameters C CRF parameters



HMMs and CRFs: main differences

» Representation:
» HMM “features”’ are tied to the generative process.
» CRF features are very flexible. They can look at the whole
input x paired with a label bigram (y,y’).
» In practice, for prediction tasks, “good” discriminative features
can improve accuracy a lot.
» Parameter estimation:
HMMs focus on explaining the data, both x and y.
CRFs focus on the mapping from x to y.
A priori, it is hard to say which paradigm is better.
Same dilemma as Naive Bayes vs. Maximum Entropy.
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Learning Structured Predictors

» Goal: given training data
{(X(l),y(l)), (x(@,y@), .., (X(m)'y(m))}
learn a predictor x — y with small error on unseen inputs

» In a CRF: N '
; f .
argmaxP(ylx;w) = eXp{Zl—lv; .(X'LYI 1,yi)}
yeY* (wa)
n
= Zw'f(xri:Yi—lei)
im1

» To predict new values, Z(x; w) is not relevant
» Parameter estimation: w is set to maximize likelihood



Learning Structured Predictors

» Goal: given training data
{(X(l),y(l)), (x(@,y@), .., (X(m)'y(m))}
learn a predictor x — y with small error on unseen inputs

» In a CRF: N '
; f .
argmaxP(ylx;w) = eXp{Zl—lv; .(X'LYI 1,yi)}
yeY* (wa)
n
= Zw'f(xri:Yi—lei)
im1

» To predict new values, Z(x; w) is not relevant
» Parameter estimation: w is set to maximize likelihood

» Can we learn w more directly, focusing on errors?



The Structured Perceptron
(Collins, 2002)

> Setw=20
» Fort=1...T
» For each training example (x,y)

1. Compute z = argmax, y i, £(x,1,2i_1,2)
2. Ifz#y

W w+Zf(x, 1, ¥i-1,¥1) _Zf(xv i,2i-1,2i)

» Return w



The Structured Perceptron + Averaging
(Freund and Schapire, 1998) (Collins 2002)

> Setw=0, w*=0
» Fort=1...T
» For each training example (x,y)

1. Compute z = argmax, > ., f(x,1,2i_1,2;)
2. Ifz#y

wewt Y fxiyiny) — ) flxiz,m)

3. ww=w+w

» Return w®/mT, where m is the number of training examples



Properties of the Perceptron

» Online algorithm. Often much more efficient than “batch”
algorithms

» If the data is separable, it will converge to parameter values
with O errors

» Number of errors before convergence is related to a definition
of margin. Can also relate margin to generalization properties
» In practice:
1. Averaging improves performance a lot
2. Typically reaches a good solution after only a few (say 5)

iterations over the training set
3. Often performs nearly as well as CRFs, or SVMs



Averaged Perceptron Convergence

Iteration  Accuracy
90.79
91.20
91.32
91.47
91.58
91.78
91.76
91.82
91.88
10 91.91
11 91.92
12 91.96

—_
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(results on validation set for a parsing task)



Margin-based Structured Prediction
> Let f(x,y) =Y i f(x 1, yi-1,¥i)
» Model: argmaxycy- w - f(x,y)

» Consider an example (x(*), y(¥)):
Jy #y*) - wf(xM) yK) < w f(x(®) y) = error



Margin-based Structured Prediction
> Let f(x,y) =Y i f(x 1, yi-1,¥i)
» Model: argmaxycy- w - f(x,y)

» Consider an example (x(* ) Ly
dy # y(k) LW f(X(k )) <W- f( y) — error

> Lety’ = argmax cys.y 400 W+ f(x! ),y)
Define vy = w - (£(x*), y(K)) — f(x(®) y/))



Margin-based Structured Prediction

> Let f(x,y) =Y i f(x 1, yi-1,¥i)

» Model: argmaxycy- w - f(x,y)

» Consider an example (x(* ) Ly
dy # y(k) LW f(X(k )) <W- f( y) — error

> Lety’ = argmaxycy«.y 200 W f(x! ),y)
Define vy = w - (£(x*), y(K)) — f(x(®) y/))

» The quantity yx is a notion of margin on example k:
Yx > 0 <= no mistakes in the example
high vk <= high confidence



Mistake-augmented Margins
(Taskar et al, 2004)

x®)  Jack London went to Paris

y(®)  PER PER - - LOC
y’ PER LOC - - LOC
y” PER - - - -
y"” - - PER  PER -

> Def: e(y,y') =Y " 1lyi #yll
eg., e(y(k),y(k))zol e(y[k),y’)zl, e(y(k),y

///):5
> Def: yiy =w - (£(x™,y™)) —£(x™),y)) —e(y™),y)

» Def: vy = miny¢y<k) Yky



Structured Hinge Loss

» Define loss function on example k as:

L, x),y™) = max (e(y ™, y) —w- (£ y ™) () y)))

> Leads to an SVM for structured prediction
» Given a training set, find:

m
A
argmin E L(W,X(k),y(k))“‘*HWH2
weRP 2



Regularized Loss Minimization

» Given a training set {(x(l),y(l)) ..... (x(m),y(m))} .

Find:
m A
argmin Z Liw, x™,y™) + Z||lw]?
weRP 2

» Two common loss functions L(w, x*), y(*)) -

» Log-likelihood loss (CRFs)
—log P(y™ | x™);w)

» Hinge loss (SVMs)

max ey, y) —w (£(x™), 1) — £(x¥), )
yeY*



Learning Structure Predictors: summary so far

» Linear models for sequence prediction

argmax Z w-f(x,1,yi-1,5i)
yEH* i

» Computations factorize on label bigrams
» Decoding: using Viterbi
» Marginals: using forward-backward
» Parameter estimation:
» Perceptron, Log-likelihood, SVMs
» Extensions from classification to the structured case
» Optimization methods:
» Stochastic (sub)gradient methods (LeCun et al 98)
(Shalev-Shwartz et al. 07)
» Exponentiated Gradient (Collins et al 08)

» SVM Struct (Tsochantaridis et al. 04)
» Structured MIRA (McDonald et al 05)
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