
Advanced Natural Language Processing:

Sequence Prediction

Xavier Carreras Llúıs Màrquez
carreras@lsi.upc.edu lluism@lsi.upc.edu

Universitat Politècnica de Catalunya

Named Entity Recognition

y per - qnt - - org org - time
x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc
x Jack London went to Paris

y per per - - loc
x Paris Hilton went to London

Named Entity Recognition

y per - qnt - - org org - time
x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc
x Jack London went to Paris

y per per - - loc
x Paris Hilton went to London

Part-of-speech Tagging

y NNP NNP VBZ NNP .
x Ms. Haag plays Elianti .

Outline

Sequence Prediction

Log-linear Models for Sequence Prediction

Structured Perceptron and SVMs

Sequence Prediction

I x = x1x2 . . . xn are input sequences, xi ∈ X

I y = y1y2 . . . yn are output sequences, yi ∈ {1, . . . ,L}

I Goal: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
learn a predictor x→ y that works well on unseen inputs x

I What is the form of our prediction model?

Approach 1: Local Classifiers

?
Jack London went to Paris

Decompose the sequence into n classification problems:

I A classifier predicts individual labels at each position

ŷi = argmax
l ∈ {loc, per, -}

w · f(x, i, l)

I f(x, i, l) represents an assignment of label l for xi
I w is a vector of parameters, has a weight for each feature of f

I Use standard classification methods to learn w

I At test time, predict the best sequence by
a simple concatenation of the best label for each position

Approach 1: Local Classifiers

?
Jack London went to Paris

Decompose the sequence into n classification problems:

I A classifier predicts individual labels at each position

ŷi = argmax
l ∈ {loc, per, -}

w · f(x, i, l)

I f(x, i, l) represents an assignment of label l for xi
I w is a vector of parameters, has a weight for each feature of f

I Use standard classification methods to learn w

I At test time, predict the best sequence by
a simple concatenation of the best label for each position

Indicator Features

I f(x, i, l) is a vector of d features representing label l for xi

(f1(x, i, l), . . . , fj(x, i, l), . . . , fd(x, i, l))

I What’s in a feature fj(x, i, l)?
I Anything we can compute using x and i and l
I Anything that indicates whether l is (not) a good label for xi
I Indicator features: binary-valued features looking at a single

simple property

fj(x, i, l) =

{
1 if xi =London and l =loc
0 otherwise

fk(x, i, l) =

{
1 if xi+1 =went and l =loc
0 otherwise

More Features for NE Recognition

per

per

-

Jack London went to Paris

In practice, construct f(x, i, l) by . . .

I Define a number of simple patterns of x and i

I current word xi
I is xi capitalized?
I xi has digits?
I prefixes/suffixes of size 1, 2, 3, . . .
I is xi a known location?
I is xi a known person?

I next word
I previous word
I current and next words

together
I other combinations

I Generate features by combining patterns with label identities l

Main limitation: features can’t capture interactions between labels!

More Features for NE Recognition

per per -
Jack London went to Paris

In practice, construct f(x, i, l) by . . .

I Define a number of simple patterns of x and i

I current word xi
I is xi capitalized?
I xi has digits?
I prefixes/suffixes of size 1, 2, 3, . . .
I is xi a known location?
I is xi a known person?

I next word
I previous word
I current and next words

together
I other combinations

I Generate features by combining patterns with label identities l

Main limitation: features can’t capture interactions between labels!

Approach 2: HMM for Sequence Prediction

per
πper

per
Tper,per

- - loc

Jack London

Oper, London

went to Paris

I Define an HMM were each label is a state
I Model parameters:

I πl : probability of starting with label l
I Tl,l′ : probability of transitioning from l to l ′

I Ol,x: probability of generating symbol x given label l

I Predictions:

p(x, y) = πy1Oy1,x1

∏
i>1

Tyi−1,yiOyi,xi

I Learning: relative counts + smoothing

I Prediction: Viterbi algorithm

Approach 2: Representation in HMM

per
πper

per
Tper,per

- - loc

Jack London

Oper, London

went to Paris

I Label interactions are captured in the transition parameters

I But interactions between symbols and labels are quite limited!
I Only Oyi,xi = p(xi | yi)
I Not clear how to exploit patterns such as:

I Capitalization, digits
I Prefixes and suffixes
I Next word, previous word
I Combinations of these with label transitions

I Why? HMM independence assumptions:
given label yi, token xi is independent of anything else

Approach 2: Representation in HMM

per
πper

per
Tper,per

- - loc

Jack London

Oper, London

went to Paris

I Label interactions are captured in the transition parameters

I But interactions between symbols and labels are quite limited!
I Only Oyi,xi = p(xi | yi)
I Not clear how to exploit patterns such as:

I Capitalization, digits
I Prefixes and suffixes
I Next word, previous word
I Combinations of these with label transitions

I Why? HMM independence assumptions:
given label yi, token xi is independent of anything else

Local Classifiers vs. HMM

Local Classifiers

I Form:

w · f(x, i, l)

I Learning: standard classifiers

I Prediction: independent for
each xi

I Advantage: feature-rich

I Drawback: no label
interactions

HMM

I Form:

πy1Oy1,x1

∏
i>1

Tyi−1,yiOyi,xi

I Learning: relative counts

I Prediction: Viterbi

I Advantage: label
interactions

I Drawback: no fine-grained
features

Approach 3: Global Sequence Predictors

y: per per - - loc
x: Jack London went to Paris

Learn a single classifier from x→ y

predict(x1:n) = argmax
y∈Yn

w · f(x, y)

But . . .

I How do we represent entire sequences in f(x, y)?

I There are exponentially-many sequences y for a given x,
how do we solve the argmax problem?

Approach 3: Global Sequence Predictors

y: per per - - loc
x: Jack London went to Paris

Learn a single classifier from x→ y

predict(x1:n) = argmax
y∈Yn

w · f(x, y)

But . . .

I How do we represent entire sequences in f(x, y)?

I There are exponentially-many sequences y for a given x,
how do we solve the argmax problem?

Factored Representations

y: per per - - loc
x: Jack London went to Paris

I How do we represent entire sequences in f(x, y)?

I Look at individual assignments yi (standard classification)
I Look at bigrams of outputs labels 〈yi−1, yi〉
I Look at trigrams of outputs labels 〈yi−2, yi−1, yi〉
I Look at n-grams of outputs labels 〈yi−n+1, . . . , yi−1, yi〉
I Look at the full label sequence y (intractable)

I A factored representation will lead to a tractable model

Factored Representations

y: per per - - loc
x: Jack London went to Paris

I How do we represent entire sequences in f(x, y)?

I Look at individual assignments yi (standard classification)
I Look at bigrams of outputs labels 〈yi−1, yi〉
I Look at trigrams of outputs labels 〈yi−2, yi−1, yi〉
I Look at n-grams of outputs labels 〈yi−n+1, . . . , yi−1, yi〉
I Look at the full label sequence y (intractable)

I A factored representation will lead to a tractable model

Factored Representations

y: per per - - loc
x: Jack London went to Paris

I How do we represent entire sequences in f(x, y)?

I Look at individual assignments yi (standard classification)
I Look at bigrams of outputs labels 〈yi−1, yi〉
I Look at trigrams of outputs labels 〈yi−2, yi−1, yi〉
I Look at n-grams of outputs labels 〈yi−n+1, . . . , yi−1, yi〉
I Look at the full label sequence y (intractable)

I A factored representation will lead to a tractable model

Factored Representations

y: per per - - loc
x: Jack London went to Paris

I How do we represent entire sequences in f(x, y)?

I Look at individual assignments yi (standard classification)
I Look at bigrams of outputs labels 〈yi−1, yi〉
I Look at trigrams of outputs labels 〈yi−2, yi−1, yi〉
I Look at n-grams of outputs labels 〈yi−n+1, . . . , yi−1, yi〉
I Look at the full label sequence y (intractable)

I A factored representation will lead to a tractable model

Bigram Indicator Features

1 2 3 4 5
y per per - - loc
x Jack London went to Paris

I Indicator features:

fj(x, i, yi−1, yi) =


1 if xi =”London” and

yi−1 = per and yi = per
0 otherwise

e.g., fj(x, 2,per,per) = 1, fj(x, 3,per, -) = 0

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1

Representations Factored at Bigrams

y: per per - - loc
x: Jack London went to Paris

I f(x, i, yi−1, yi)
I A d-dimensional feature vector of a label bigram at i
I Each dimension is typically a boolean indicator (0 or 1)

I f(x, y) =
∑n
i=1 f(x, i, yi−1, yi)

I A d-dimensional feature vector of the entire y
I Aggregated representation by summing bigram feature vectors
I Each dimension is now a count of a feature pattern

Linear Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x, y)

where
f(x, y) =

n∑
i=1

f(x, i, yi−1, yi)

I Note the linearity of the expression:

w · f(x, y) = w ·
n∑
i=1

f(x, i, yi−1, yi)

=

n∑
i=1

w · f(x, i, yi−1, yi)

I Next questions:
I How do we solve the argmax problem?
I How do we learn w?

Linear Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x, y)

where
f(x, y) =

n∑
i=1

f(x, i, yi−1, yi)

I Note the linearity of the expression:

w · f(x, y) = w ·
n∑
i=1

f(x, i, yi−1, yi)

=

n∑
i=1

w · f(x, i, yi−1, yi)

I Next questions:
I How do we solve the argmax problem?
I How do we learn w?

Linear Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x, y)

where
f(x, y) =

n∑
i=1

f(x, i, yi−1, yi)

I Note the linearity of the expression:

w · f(x, y) = w ·
n∑
i=1

f(x, i, yi−1, yi)

=

n∑
i=1

w · f(x, i, yi−1, yi)

I Next questions:
I How do we solve the argmax problem?
I How do we learn w?

Predicting with Factored Sequence Models

I Consider a fixed w. Given x1:n find:

argmax
y∈Yn

n∑
i=1

w · f(x, i, yi−1, yi)

I We can use the Viterbi algorithm, takes O(n|Y|2)

I Intuition: output sequences that share bigrams will share
scores

. . . i− 2 i− 1 i i+ 1 . . .

best subsequence with yi−1 = per

best subsequence with yi−1 = loc

best subsequence with yi−1 = –

best subsequence with yi = per

w·f(
x,i

,lo
c,

per
)

best subsequence with yi = loc

best subsequence with yi = –

Viterbi for Linear Factored Predictors

ŷ = argmax
y∈Yn

n∑
i=1

w · f(x, i, yi−1, yi)

I Definition: score of optimal sequence for x1:i ending with
a ∈ Y

δi(a) = max
y∈Yi:yi=a

i∑
j=1

w · f(x, j, yj−1, yj)

I Use the following recursions, for all a ∈ Y:

δ1(a) = w · f(x, 1, y0 = null,a)

δi(a) = max
b∈Y

δi−1(b) + w · f(x, i,b,a)

I The optimal score for x is maxa∈Y δn(a)

I The optimal sequence ŷ can be recovered through pointers

Linear Factored Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x, y)

I Factored representation, e.g. based on bigrams

I Flexible, arbitrary features of full x and the factors

I Efficient prediction using Viterbi
I Next topic: learning w:

I Maximum-Entropy Markov Models (local)
I Conditional Random Fields (global)
I Structured Perceptron (global)
I Structured SVM (global)

Outline

Sequence Prediction

Log-linear Models for Sequence Prediction

Structured Perceptron and SVMs

Sequence Tagging with Log-Linear Models

I x are input sequences (e.g. sentences of words)

I y are output sequences (e.g. sequences of NE tags)

I Goal: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
learn a model x→ y

I Log-linear models:

argmax
y∈Y∗

P(y|x;w) =
exp {w · f(x, y)}

Z(x;w)

I Exponentially many y’s for a given input x

I Solution 1: decompose P(y | x) (MEMMs)

I Solution 2: decompose f(x, y) (CRFs)

Sequence Tagging with Log-Linear Models

I x are input sequences (e.g. sentences of words)

I y are output sequences (e.g. sequences of NE tags)

I Goal: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
learn a model x→ y

I Log-linear models:

argmax
y∈Y∗

P(y|x;w) =
exp {w · f(x, y)}

Z(x;w)

I Exponentially many y’s for a given input x

I Solution 1: decompose P(y | x) (MEMMs)

I Solution 2: decompose f(x, y) (CRFs)

Sequence Tagging with Log-Linear Models

I x are input sequences (e.g. sentences of words)

I y are output sequences (e.g. sequences of NE tags)

I Goal: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
learn a model x→ y

I Log-linear models:

argmax
y∈Y∗

P(y|x;w) =
exp {w · f(x, y)}

Z(x;w)

I Exponentially many y’s for a given input x

I Solution 1: decompose P(y | x) (MEMMs)

I Solution 2: decompose f(x, y) (CRFs)

Maximum Entropy Markov Models (MEMMs)
(McCallum, Freitag, Pereira ’00)

I Notation: x1:n = x1 . . . xn
I Similarly to HMMs:

P(y1:n | x1:n) = P(y1 | x1:n)× P(y2:n | x1:n, y1)

= P(y1 | x1:n)×
n∏
i=2

P(yi|x1:n, y1:i−1)

= P(y1|x1:n)×
n∏
i=2

P(yi|x1:n, yi−1)

I Assumption under MEMMs:

P(yi|x1:n, y1:i−1) = P(yi|x1:n, yi−1)

Sequence Tagging: MEMMs

I Decompose tagging problem:

P(y1:n | x1:n) = P(y1|x1:n)×
n∏
i=2

P(yi|x1:n, i, yi−1)

I Learn local log-linear distributions (i.e. MaxEnt)

p(y | x, i,y ′) =
exp{w · f(x, i,y ′,y)}

Z(x, i,y ′)

where
I x is an input sequence
I y and y ′ are tags
I f(x, i,y ′,y) is a feature vector of x, the position to be tagged,

the previous tag and the current tag

Decoding with MEMMs

I Given w, given x, find:

argmax
y∈Y∗

Pr(y | x;w) = amax
y

n∏
i=1

Pr(yi | x, yi−1)

= amax
y

∏n
i=1 exp {w · f(x, i, yi−1, yi)}∏n

i=1 Z(x, i;w)

= amax
y

n∏
i=1

exp {w · f(x, i, yi−1, yi)}

= amax
y

n∑
i=1

w · f(x, i, yi−1, yi)

I We can use the Viterbi algorithm

Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)

I Log-linear model of the conditional distribution:

Pr(y|x;w) =
exp{w · f(x, y)}

Z(x)

where
I x = x1x2 . . . xn ∈ X∗

I y = y1y2 . . . yn ∈ Y∗ and Y = {1, . . . ,L}
I f(x, y) is a feature vector of x and y
I w are model parameters

I To predict the best sequence

ŷ = argmax
y∈Y∗

Pr(y|x)

I Exponentially many y’s for a given input x

I Choose f(x, y) so that ŷ can be computed efficiently

Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)

I Log-linear model of the conditional distribution:

Pr(y|x;w) =
exp{w · f(x, y)}

Z(x)

where
I x = x1x2 . . . xn ∈ X∗

I y = y1y2 . . . yn ∈ Y∗ and Y = {1, . . . ,L}
I f(x, y) is a feature vector of x and y
I w are model parameters

I To predict the best sequence

ŷ = argmax
y∈Y∗

Pr(y|x)

I Exponentially many y’s for a given input x

I Choose f(x, y) so that ŷ can be computed efficiently

Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)

I Log-linear model of the conditional distribution:

Pr(y|x;w) =
exp{w · f(x, y)}

Z(x)

where
I x = x1x2 . . . xn ∈ X∗

I y = y1y2 . . . yn ∈ Y∗ and Y = {1, . . . ,L}
I f(x, y) is a feature vector of x and y
I w are model parameters

I To predict the best sequence

ŷ = argmax
y∈Y∗

Pr(y|x)

I Exponentially many y’s for a given input x

I Choose f(x, y) so that ŷ can be computed efficiently

Conditional Random Fields (CRFs)

I The model form is:

Pr(y|x;w) =
exp {
∑n
i=1w · f(x, i, yi−1, yi)}

Z(x,w)

where

Z(x,w) =
∑
z∈Y∗

exp

{
n∑
i=1

w · f(x, i, zi−1, zi)

}

I Features f(. . .) are given (they are problem-dependent)

I w ∈ RD are the parameters of the model

I CRFs are log-linear models on the feature functions

Conditional Random Fields: Three Problems

I Compute the probability of an output sequence y for x

Pr(y|x;w)

I Decoding: predict the best output sequence for x

argmax
y∈Y∗

Pr(y|x;w)

I Parameter estimation: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
,

learn parameters w

Decoding with CRFs

I Given w, given x, find:

argmax
y∈Y∗

Pr(y|x;w) = amax
y

exp {
∑n
i=1w · f(x, i, yi−1, yi)}

Z(x;w)

= amax
y

exp

{
n∑
i=1

w · f(x, i, yi−1, yi)

}

= amax
y

n∑
i=1

w · f(x, i, yi−1, yi)

I We can use the Viterbi algorithm

Viterbi for CRFs
. . . and MEMMs

I Calculate in O(nL2):

ŷ = argmax
y∈Yn

n∑
i=1

w · f(x, i, yi−1, yi)

I Define (score of optimal sequence for x1:i ending with a ∈ Y):

δi(a) = max
y∈Yi:yi=a

i∑
j=1

w · f(x, j, yj−1, yj)

I Use the following recursions, for all a ∈ Y:

δ1(a) = w · f(x, 1, y0 = null,a)

δi(a) = max
b∈Y

δi−1(b) + w · f(x, i,b,a)

I The optimal score for x is maxa∈Y δn(a)

I The optimal sequence ŷ can be recovered through pointers

Parameter Estimation in CRFs

I Given a training set{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
,

estimate w

I Define the conditional log-likelihood of the data:

L(w) =
1

m

m∑
k=1

log Pr(y(k)|x(k);w)

I L(w) measures how well w explains the data. A good value
for w will give a high value for Pr(y(k)|x(k);w) for all
k = 1 . . .m.

I We want w that maximizes L(w)

Learning the Parameters of a CRF

I Recall first lecture on log-linear / maximum-entropy models

I Find:

w∗ = argmax
w∈RD

L(w) −
λ

2
||w||2

where
I The first term is the log-likelihood of the data
I The second term is a regularization term, it penalizes solutions

with large norm
I λ is a parameter to control the trade-off between fitting the

data and model complexity

Learning the Parameters of a CRF

I Find

w∗ = argmax
w∈RD

L(w) −
λ

2
||w||2

I In general there is no analytical solution to this optimization
I We use iterative techniques, i.e. gradient-based optimization

1. Initialize w = 0
2. Take derivatives of L(w) − λ

2 ||w||
2, compute gradient

3. Move w in steps proportional to the gradient
4. Repeat steps 2 and 3 until convergence

Computing the gradient

∂L(w)

∂wj
=

1

m

m∑
k=1

fj(x
(k), y(k))

−

m∑
k=1

∑
y∈Y∗

Pr(y|x(k);w) fj(x
(k), y)

where

f(x, y) =
n∑
i=1

fj(x, i, yi−1, yi)

I First term: observed mean feature value

I Second term: expected feature value under current w

Computing the gradient

I The first term is easy to compute, by counting explicitly

1

m

m∑
k=1

∑
i

fj(x, i, y
(k)
i−1, y

(k)
i)

I The second term is more involved,

m∑
k=1

∑
y∈Y∗

Pr(y|x(k);w)
∑
i

fj(x
(k), i, yi−1, yi)

because it sums over all sequences y ∈ Y∗

Computing the gradient

I For an example (x(k), y(k)):

∑
y∈Yn

Pr(y|x(k);w)
n∑
i=1

fj(x
(k), i, yi−1, yi) =

n∑
i=1

∑
a,b∈Y

µki (a,b)fj(x
(k), i,a,b)

where

µki (a,b) =
∑

y∈Yn : yi−1=a, yi=b

Pr(y|x(k);w)

I The quantities µki can be computed efficiently in O(nL2)
using the forward-backward algorithm

Forward-Backward for CRFs

I Assume fixed x. Calculate in O(nL2)

µi(a,b) =
∑

y∈Yn:yi−1=a,yi=b

Pr(y|x;w) , 1 6 i 6 n; a,b ∈ Y

I Define (forward and backward quantities):

αi(a) =
∑

y∈Yi:yi=a

exp
{∑i

j=1 w · f(x, j, yj−1, yj)
}

βi(b) =
∑

y∈Y(n−i+1):y1=b

exp
{∑n−i+1

j=2 w · f(x, i+j−1, yj−1, yj)
}

I Compute recursively αi(a) and βi(b) (similar to Viterbi)

I Z =
∑
a αn(a)

I µi(a,b) = {αi−1(a) ∗ exp{w · f(x, i,a,b)} ∗ βi(b) ∗ Z−1}

Compute the probability of a label sequence

Pr(y|x,w) =
1

Z(x;w)
exp

{∑
i

w · f(x, i, yi−1, yi)

}
where

Z(x;w) =
∑
z∈Yn

exp

{∑
i

w · f(x, i, zi−1, zi)

}

I Compute Z(x;w) efficiently, using the forward algorithm

CRFs: summary so far

I Log-linear models for sequence prediction, Pr(y|x;w)

I Computations factorize on label bigrams

I Model form:

argmax
y∈Y∗

∑
i

w · f(x, i, yi−1, yi)

I Decoding: uses Viterbi (from HMMs)
I Parameter estimation:

I Gradient-based methods, in practice L-BFGS
I Computation of gradient uses forward-backward (from HMMs)

CRFs: summary so far

I Log-linear models for sequence prediction, Pr(y|x;w)

I Computations factorize on label bigrams

I Model form:

argmax
y∈Y∗

∑
i

w · f(x, i, yi−1, yi)

I Decoding: uses Viterbi (from HMMs)
I Parameter estimation:

I Gradient-based methods, in practice L-BFGS
I Computation of gradient uses forward-backward (from HMMs)

I Next Questions: MEMMs or CRFs? HMMs or CRFs?

MEMMs and CRFs

MEMMs: Pr(y | x) =

n∏
i=1

exp {w · f(x, i, yi−1, yi)}

Z(x, i, yi−1;w)

CRFs: Pr(y | x) =
exp {
∑n
i=1 w · f(x, i, yi−1, yi)}

Z(x)

I MEMMs locally normalized; CRFs globally normalized

I MEMM assume that Pr(yi | x1:n, y1:i−1) = Pr(yi | x1:n, yi−1)

I Both exploit the same factorization, i.e. same features

I Same computations to compute argmaxy Pr(y | x)

I MEMMs are cheaper to train

I CRFs are easier to extend to other structures (next lecture)

HMMs for sequence prediction

I x are the observations, y are the (un)hidden states

I HMMs model the joint distributon Pr(x, y)
I Parameters: (assume X = {1, . . . ,k} and Y = {1, . . . , l})

I π ∈ Rl, πa = Pr(y1 = a)
I T ∈ Rl×l, Ta,b = Pr(yi = b|yi−1 = a)
I O ∈ Rl×k, Oa,c = Pr(xi = c|yi = a)

I Model form

Pr(x, y) = πy1Oy1,x1

n∏
i=2

Tyi−1,yiOyi,xi

I Parameter Estimation: maximum likelihood by counting
events and normalizing

HMMs and CRFs

I In CRFs: ŷ = amaxy
∑
iw · f(x, i, yi−1, yi)

I In HMMs:
ŷ = amaxy πy1Oy1,x1

∏n
i=2 Tyi−1,yiOyi,xi

= amaxy log(πy1Oy1,x1) +
∑n
i=2 log(Tyi−1,yiOyi,xi)

I An HMM can be ported into a CRF by setting:

fj(x, i,y,y ′) wj

i = 1 & y ′ = a log(πa)
i > 1 & y = a & y ′ = b log(Ta,b)

y ′ = a & xi = c log(Oa,b)

I Hence, HMM parameters ⊂ CRF parameters

HMMs and CRFs

I In CRFs: ŷ = amaxy
∑
iw · f(x, i, yi−1, yi)

I In HMMs:
ŷ = amaxy πy1Oy1,x1

∏n
i=2 Tyi−1,yiOyi,xi

= amaxy log(πy1Oy1,x1) +
∑n
i=2 log(Tyi−1,yiOyi,xi)

I An HMM can be ported into a CRF by setting:

fj(x, i,y,y ′) wj

i = 1 & y ′ = a log(πa)

i > 1 & y = a & y ′ = b log(Ta,b)
y ′ = a & xi = c log(Oa,b)

I Hence, HMM parameters ⊂ CRF parameters

HMMs and CRFs

I In CRFs: ŷ = amaxy
∑
iw · f(x, i, yi−1, yi)

I In HMMs:
ŷ = amaxy πy1Oy1,x1

∏n
i=2 Tyi−1,yiOyi,xi

= amaxy log(πy1Oy1,x1) +
∑n
i=2 log(Tyi−1,yiOyi,xi)

I An HMM can be ported into a CRF by setting:

fj(x, i,y,y ′) wj

i = 1 & y ′ = a log(πa)
i > 1 & y = a & y ′ = b log(Ta,b)

y ′ = a & xi = c log(Oa,b)

I Hence, HMM parameters ⊂ CRF parameters

HMMs and CRFs

I In CRFs: ŷ = amaxy
∑
iw · f(x, i, yi−1, yi)

I In HMMs:
ŷ = amaxy πy1Oy1,x1

∏n
i=2 Tyi−1,yiOyi,xi

= amaxy log(πy1Oy1,x1) +
∑n
i=2 log(Tyi−1,yiOyi,xi)

I An HMM can be ported into a CRF by setting:

fj(x, i,y,y ′) wj

i = 1 & y ′ = a log(πa)
i > 1 & y = a & y ′ = b log(Ta,b)

y ′ = a & xi = c log(Oa,b)

I Hence, HMM parameters ⊂ CRF parameters

HMMs and CRFs: main differences

I Representation:
I HMM “features” are tied to the generative process.
I CRF features are very flexible. They can look at the whole

input x paired with a label bigram (y,y ′).
I In practice, for prediction tasks, “good” discriminative features

can improve accuracy a lot.

I Parameter estimation:
I HMMs focus on explaining the data, both x and y.
I CRFs focus on the mapping from x to y.
I A priori, it is hard to say which paradigm is better.
I Same dilemma as Naive Bayes vs. Maximum Entropy.

Outline

Sequence Prediction

Log-linear Models for Sequence Prediction

Structured Perceptron and SVMs

Learning Structured Predictors

I Goal: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
learn a predictor x→ y with small error on unseen inputs

I In a CRF:

argmax
y∈Y∗

P(y|x;w) =
exp {
∑n
i=1w · f(x, i, yi−1, yi)}

Z(x;w)

=

n∑
i=1

w · f(x, i, yi−1, yi)

I To predict new values, Z(x;w) is not relevant
I Parameter estimation: w is set to maximize likelihood

I Can we learn w more directly, focusing on errors?

Learning Structured Predictors

I Goal: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
learn a predictor x→ y with small error on unseen inputs

I In a CRF:

argmax
y∈Y∗

P(y|x;w) =
exp {
∑n
i=1w · f(x, i, yi−1, yi)}

Z(x;w)

=

n∑
i=1

w · f(x, i, yi−1, yi)

I To predict new values, Z(x;w) is not relevant
I Parameter estimation: w is set to maximize likelihood

I Can we learn w more directly, focusing on errors?

The Structured Perceptron
(Collins, 2002)

I Set w = 0

I For t = 1 . . . T
I For each training example (x, y)

1. Compute z = argmaxz
∑n
i=1 f(x, i, zi−1, zi)

2. If z 6= y

w← w +
∑
i

f(x, i, yi−1, yi) −
∑
i

f(x, i, zi−1, zi)

I Return w

The Structured Perceptron + Averaging
(Freund and Schapire, 1998) (Collins 2002)

I Set w = 0, wa = 0

I For t = 1 . . . T
I For each training example (x, y)

1. Compute z = argmaxz
∑n
i=1 f(x, i, zi−1, zi)

2. If z 6= y

w← w +
∑
i

f(x, i, yi−1, yi) −
∑
i

f(x, i, zi−1, zi)

3. wa = wa + w

I Return wa/mT , where m is the number of training examples

Properties of the Perceptron

I Online algorithm. Often much more efficient than “batch”
algorithms

I If the data is separable, it will converge to parameter values
with 0 errors

I Number of errors before convergence is related to a definition
of margin. Can also relate margin to generalization properties

I In practice:

1. Averaging improves performance a lot
2. Typically reaches a good solution after only a few (say 5)

iterations over the training set
3. Often performs nearly as well as CRFs, or SVMs

Averaged Perceptron Convergence

Iteration Accuracy
1 90.79
2 91.20
3 91.32
4 91.47
5 91.58
6 91.78
7 91.76
8 91.82
9 91.88

10 91.91
11 91.92
12 91.96
. . .

(results on validation set for a parsing task)

Margin-based Structured Prediction

I Let f(x, y) =
∑n
i=1 f(x, i, yi−1, yi)

I Model: argmaxy∈Y∗ w · f(x, y)

I Consider an example (x(k), y(k)):
∃y 6= y(k) : w · f(x(k), y(k)) < w · f(x(k), y) =⇒ error

I Let y ′ = argmaxy∈Y∗:y 6=y(k) w · f(x(k), y)

Define γk = w · (f(x(k), y(k)) − f(x(k), y ′))

I The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Margin-based Structured Prediction

I Let f(x, y) =
∑n
i=1 f(x, i, yi−1, yi)

I Model: argmaxy∈Y∗ w · f(x, y)

I Consider an example (x(k), y(k)):
∃y 6= y(k) : w · f(x(k), y(k)) < w · f(x(k), y) =⇒ error

I Let y ′ = argmaxy∈Y∗:y 6=y(k) w · f(x(k), y)

Define γk = w · (f(x(k), y(k)) − f(x(k), y ′))

I The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Margin-based Structured Prediction

I Let f(x, y) =
∑n
i=1 f(x, i, yi−1, yi)

I Model: argmaxy∈Y∗ w · f(x, y)

I Consider an example (x(k), y(k)):
∃y 6= y(k) : w · f(x(k), y(k)) < w · f(x(k), y) =⇒ error

I Let y ′ = argmaxy∈Y∗:y 6=y(k) w · f(x(k), y)

Define γk = w · (f(x(k), y(k)) − f(x(k), y ′))

I The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Mistake-augmented Margins
(Taskar et al, 2004)

x(k) Jack London went to Paris
y(k) per per - - loc
y ′ per loc - - loc
y ′′ per - - - -
y ′′′ - - per per -

I Def: e(y, y ′) =
∑n
i=1[yi 6= y ′i]

e.g., e(y(k), y(k))=0, e(y(k), y ′)=1, e(y(k), y ′′′)=5

I Def: γk,y = w · (f(x(k), y(k)) − f(x(k), y)) − e(y(k), y)

I Def: γk = miny 6=y(k) γk,y

Structured Hinge Loss

I Define loss function on example k as:

L(w, x(k), y(k)) = max
y∈Y∗

(
e(y(k), y) − w · (f(x(k), y(k)) − f(x(k), y))

)
I Leads to an SVM for structured prediction

I Given a training set, find:

argmin
w∈RD

m∑
k=1

L(w, x(k), y(k)) +
λ

2
‖w‖2

Regularized Loss Minimization

I Given a training set
{
(x(1), y(1)), . . . , (x(m), y(m))

}
.

Find:

argmin
w∈RD

m∑
k=1

L(w, x(k), y(k)) +
λ

2
‖w‖2

I Two common loss functions L(w, x(k), y(k)) :
I Log-likelihood loss (CRFs)

− log P(y(k) | x(k);w)

I Hinge loss (SVMs)

max
y∈Y∗

(
e(y(k), y) − w · (f(x(k), y(k)) − f(x(k), y))

)

Learning Structure Predictors: summary so far

I Linear models for sequence prediction

argmax
y∈Y∗

∑
i

w · f(x, i, yi−1, yi)

I Computations factorize on label bigrams
I Decoding: using Viterbi
I Marginals: using forward-backward

I Parameter estimation:
I Perceptron, Log-likelihood, SVMs
I Extensions from classification to the structured case
I Optimization methods:

I Stochastic (sub)gradient methods (LeCun et al 98)
(Shalev-Shwartz et al. 07)

I Exponentiated Gradient (Collins et al 08)
I SVM Struct (Tsochantaridis et al. 04)
I Structured MIRA (McDonald et al 05)

	Sequence Prediction
	Log-linear Models for Sequence Prediction
	Structured Perceptron and SVMs

