Deep Learning for NLP

(without Magic)

Richard Socher and Christopher Manning
Stanford University

NAACL 2013, Atlanta
http://nlp.stanford.edu/courses/NAACL2013/

*with a big thank you to Yoshua Bengio, with whom we
participated in the previous ACL 2012 version of this tutorial

, E
DQQP LEOL\’MLMS E NS

NER WordNet

Most current machine learning works
well because of human-designed

representations and input features

Parser
Machine learning becomes just optimizing r R

weights to best make a final prediction

Representation learning attempts to s
automatically learn good features or representations

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction

A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov
Random Fields with multiple layers, and various types of
multiple-layer neural networks

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstract
representations as you head up

Input layer —

3 Raw sensory inputs (roughly)

Part 1.1: The Basics

~Five Reasons to Exptare.
Deep Learning

1 Learnhing reprasenta&ians

Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/...

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning
Our computers should do the same

Deep learning provides a way of doing this

5

2 The need for distributed
representations

Current NLP systems are incredibly fragile because of
their atomic symbol representations

S

T

NP ADVP VP :
/N SN
PRP$ NN RB VBZ NP :

My dog also eats NNS

oranges

2 The need for distributional &
distributed representations

Learned word representations help enormously in NLP
They provide a powerful similarity model for words

Distributional similarity based word clusters greatly help most
applications

+1.4% F1 Dependency Parsing 15.2% error reduction (Koo &
Collins 2008, Brown clustering)

+3.4% F1 Named Entity Recognition 23.7% error reduction
(Stanford NER, exchange clustering)

Distributed representations can do even better by representing
more dimensions of similarity

#2 The need for distributed o ¢ o
represenkakiohs

Clusteri Multi- input
ustering Clusteri Sub—partition 3 -
ustering ‘.., Sub-—partition 2
\ = -~
Cl=1 \ C2=00 7
C2=0 \C3=1 7
C3=0 (S
v
) 7\ Cl=1
~_ Sub-partition 1 A o
' S~ JSCl=1 \ C3=1
regions ~ 4 C2=1 \
X defined S0
by learned K
% P prototypes Cl1=0 K
C2=0 s
- C3=0 /
; C1=0
C2=1 \ -
X ;7 C3=0 \ (Cé;(])
s \ C3=1
; \
\

DISTRIBUTED PARTITION

LOCAL PARTITION

Learning features that are not mutually exclusive can be exponentially
more efficient than nearest-neighbor-like or clustering-like models

Diskributed representations deal with
the curse of dimensionality

Generalizing locally (e.g., nearest
neighbors) requires representative
examples for all relevant variations!

1 dimension:
10 positions

2 dimensions:
100 positions
[J

Classic solutions:
e Manual feature design

e Assuming a smooth target
function (e.g., linear models)

e Kernel methods (linear in terms
of kernel based on data points)

» 3 dimensions:
1000 positions!

Neural networks parameterize and
learn a “similarity” kernel

#3 Uv\su.pe.rvised feature and
weight Learning

Today, most practical, good NLP& ML methods require
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you
learn classification decisions

10

#4" Learnhing mui.!:ipi.e levels of

repre.se.v\!:a!:i.on

Biologically inspired learning

The cortex seems to have a generic
learning algorithm

The brain has a deep architecture

Task 1 OutputIq Task 2 OutputP L Task 3 Output

We need good intermediate representations
that can be shared across tasks

Multiple levels of latent variables allow
combinatorial sharing of statistical strength

Insufficient model depth can be
exponentially inefficient

11

#4' Learhning mui.!:ipie levels ,
of representation i

[Lee et al. ICML 2009; Lee et al. NIPS 209]

Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

e TN ALYV
I AVNNSET T REE

Hondling the recursivity of human

Language

Human sentences are composed —it z‘t <

from words and phrases - >8 >8>
o o 0o

We need compositionality in our xt_lr X, r XHI_)
ML models 0000 (ecoe| (ecoo

Recursion: the same operator

A small crowd

i i quietly enters
(same parametgrs) is applied pheny enter
repeatedly on different church
components semantic

Representations

A small quietly
crowd enters

Det Adj.

o
historic

13

#5 ka Now¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful ®

What has changed?

* New methods for unsupervised pre-training have been
developed (Restricted Boltzmann Machines = RBMs,
autoencoders, contrastive estimation, etc.)

* More efficient parameter estimation methods
* Better understanding of model regularization

Deep Learning models have alread
achieved impressive results for HL

Neural Language Model n

[Mikolov et al. Interspeech 2011] © &

=/

MSR MAVIS Speech System
[Dahl et al. 2012; Seide et al. 2011;
following Mohamed et al. 2011]

r o o -
“The algorithms represent the first time a
company has released a deep-neural-
networks (DNN)-based speech-recognition

algorithm in a commercial product.”
15

v
}

Recurrent NN combination

Discriminative LM

Model \ WSJ ASR task m

KN5 Baseline

17.2
16.9
14.4

Acoustic model & | Recog | RT03S
training \ WER | FSH

GMM 40-mix,
BMMI, SWB 309h

DBN-DNN 7 layer
x 2048, SWB 309h

GMM 72-mix,
BMMI, FSH 2000h

1l-pass 27.4 23.6
—-adapt

1l-pass 18.5 16.1
—adapt (-33%) (-32%)
k-pass 18.6 17.1

+adapt

Deep Learih Models Have Interesting
Pertormance Characteristics

Deep Iearning models can now be very fast in some circumstances

* SENNA [Collobert et al. 2011] can do POS or NER faster than
other SOTA taggers (16x to 122x), using 25x less memory
e WSJ POS 97.29% acc; CoNLL NER 89.59% F1; CoNLL Chunking 94.32% F1

Changes in computing technology favor deep learning
* In NLP, speed has traditionally come from exploiting sparsity

e But with modern machines, branches and widely spaced
memory accesses are costly

e Uniform parallel operations on dense vectors are faster
These trends are even stronger with multi-core CPUs and GPUs

16

et

/

Good work - but 7 think .
e rriight need a &ttk
rriore detail right fere.

17

)

,
n

‘N-b__

_\ .
/ _«.

"a

o -

'rhen = -V o

rﬂwac.la ,
3 DCcur<

<

oyt

e

~-

-

Outline of the Tutorial

1. The Basics
1. Motivations
2. From logistic regression to neural networks
3. Word representations
4. Unsupervised word vector learning
5. Backpropagation Training
6. Learning word-level classifiers: POS and NER

7.

Sharing statistical strength

2. Recursive Neural Networks

3. Applications, Discussion, and Resources

18

Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks

1.

A i

7.

Motivation

Recursive Neural Networks for Parsing

Optimization and Backpropagation Through Structure
Compositional Vector Grammars: Parsing
Recursive Autoencoders: Paraphrase Detection

Matrix-Vector RNNs:
Recursive Neural Tensor Networks: Sentiment Analysis

Relation classification

3. Applications, Discussion, and Resources

19

Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks

3. Applications, Discussion, and Resources

20

1.

2.
3.
4

Assorted Speech and NLP Applications
Deep Learning: General Strategy and Tricks
Resources (readings, code, ...)

Discussion

21

Part 1.2: The Basics

From Logistic regression to
neural nets

Demystifying neural nebtworks

Neural networks come with A single neuron
their own terminological A computational unit with n (3) inputs

bagoase and 1 output
g8ag and parameters W, b

... just like SVMs

_—
But if you understand how
logistic regression or maxent
models work
Then you already understand the Inputs Activation Output
operation of a basic neural function

nhetwork neuron!

Bias unit corresponds to intercept term
22

From Maxent Classifiers ko Neural
Networlks

In NLP, a maxent classifier is normally written as:

exp E,ﬂi f(c,d)
S o0 3 A

Supervised learning gives us a distribution for datum d over classes in C

P(cld,A) =

eAT fle,d)

E ’e)LTf(c’,d)
C

Such a classifier is used as-is in a neural network (“a softmax layer”)

Vector form: P(cld,\)=

e Often as the top layer: J = softmax(A-x)

But for now we’ll derive a two-class logistic model for one neuron
23

From Maxent Classifiers ko Neural
Networles

e)LTf(c,d)
Vector form: P(cld,A) = ——
E e f(c'.d)
C
Make two class: T e d) T e d) AT e)
e b e b e b
P(c, ld,A)= = '
1 ’ AT f (e, d) AT f(cy,d) AT f(e.d) ATf(cy.d) A f(cd)
e + e e + e 4
1
= = forx = f(c,,d)- f(c,,d)
T ~ T 1° 20
1_|_e7L [f(cy,d)=f(c;,d)] 1+€ Ax

= f(A'x)

for f(z) = 1/(1 + exp(-z)), the logistic function — a sigmoid non-linearity.

-6 -4 -2 0 2 4 6
24

This is exaxc!:i.v whal a neuron
compu&es

b: We can have an “always on”

h (X) = f(WTx + b) «——— feature, which gives a class prior,
w.,b | .
or separate it out, as a bias term
1

f(z)=1 =

+e°

X1
x — | faY |
2 ¥ X 6 -4 -2 0 2 4 6
L T hylx)
\ / w,b
X3 N
T w, b are the parameters of this neuron

75 i.e., this logistic regression model

A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

26

A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

It is the training

criterion that will direct

what the intermediate
7N\ hidden variables should
_ /‘Tm(':) be, so as to do a good
job at predicting the
targets for the next
layer, etc.

Layer L,

27

A neural network = running several
Logistic regressions at the same time

Before we know it, we have a multilayer neural network....

28

Matrix notation for a Layer

We have
a, = f(W,x; + Wiox, + Wisx; + b))
a, = f (W x, + Wyx, + Wysx; + b))
etc.

In matrix notation

z=Wx+b
a=f(z)

where fis applied element-wise:

f([Zl,Zz,Z3])=[f(zl),f(zz),f(z3)] Layer L,

29

How do we train the weights W?

e For asingle supervised layer, we train just like a maxent model —
we calculate and use error derivatives (gradients) to improve

* Online learning: Stochastic gradient descent (SGD)
e Or improved versions like AdaGrad (Duchi, Hazan, & Singer 2010)

e Batch learning: Conjugate gradient or L-BFGS

e A multilayer net could be more complex because the internal
(“hidden”) logistic units make the function non-convex ... just as
for hidden CRFs [Quattoni et al. 2005, Gunawardana et al. 2005]

* But we can use the same ideas and techniques

e Just without guarantees ...

o ° We “backpropagate” error derivatives through the model

Nown-Linearities: ka &key’ re needed

e For logistic regression: map to probabilities —Z vl

. . . 0 XN)
e Here: function approximation, ‘.\T

e.g., regression or classification !

* Without non-linearities, deep neural networks

can’t do anything more than a linear transform 1 M =3

e Extra layers could just be compiled down into
a single linear transform x

* Probabilistic interpretation unnecessary except in

=

the Boltzmann machine/graphical models

e People often use other non-linearities, suchas 1 M =10
tanh, as we’ll discuss in part 3

31

=}

Summar
Khnowing the meaning of words!

You now understand the basics and the relation to other models

e Neuron = logistic regression or similar function

* |nput layer = input training/test vector

e Bias unit = intercept term/always on feature

e Activation = response

e Activation function is a logistic (or similar “sigmoid” nonlinearity)

e Backpropagation = running stochastic gradient descent backward
layer-by-layer in a multilayer network

e Weight decay = regularization / Bayesian prior

32

Effective deep Learning became possible
through whsupervised pre-training

w

28 i
: +
I N
?2‘5 e
= + I
o : |
B . - ST L R RERRRRRE _
o H] _
E 22 * j E
2 ¥ l i
...... Rt ectetesscsssassnnsns N N MmO
g T ' !
£ | —— i !
m]8 I REEER I I R I u
2 | = | e
3] . i
1B e + ..
B z + —
@ : : :
-t : : :
14 _\\, ... -
-l SRR R R R ...
1
1 2 3 4
number of layers

33

test classification error (perc)

28

o
)

N
K

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training

i
................................. e et
: z : ¥
....... o JTCPRRIRNAT. STSRRS: SIS SNSRI [
I an + : !
] 1 - — i
........... l—.—l l I
| L l] L i | 'ﬁ i
A I — — i
~~~~~~~~~ E R ! Ct A
1 2 3 4 5

number of layers

0-9 handwritten digit recognition error rate (MNIST data)



34

Part 1.3: The Basics

Word Rapresen&a!:wns




The standard word repre.se.hka&i.cv\

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: lhobel, acrwfar@\f:e, walle

In vector space terms, this is a vector with one 1 and a lot of zeroes

[coocoo0o000001 000 O]
Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)
We call this a “one-hot” representation. Its problem:

motel [c 6 000000001 0000] AND
hotel [oo 000001000000 0] = ©

35



Diskributional similarity based
rapresevx&a&ions

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

banking
banking

N These words will represent banking 77

You can vary whether you use local or large context
36 to get a more syntactic or semantic clustering



Class-based (hard) and soft
clustering word representations

Class based models learn word classes of similar words based on
distributional information ( ~ class HMM)

e Brown clustering (Brown et al. 1992)
e Exchange clustering (Martin et al. 1998, Clark 2003)
e Desparsification and great example of unsupervised pre-training

Soft clustering models learn for each cluster/topic a distribution
over words of how likely that word is in each cluster

e Latent Semantic Analysis (LSA/LSI), Random projections
e Latent Dirichlet Analysis (LDA), HMM clustering

37



Neural word embeddings
as o distributed representation

Similar idea

Combine vector space 4
semantics with the prediction of 0.286
probabilistic models (Bengio et 8;3?
al. 2003, Collobert & Weston :0'107
2008, Turian et al. 2010) linguistics = 0.109
In all of these approaches, -0.542
including deep learning models, 0.349
a word is represented as a 0.271

dense vector \_

38




Neural Embeddings

* Dense vectors
e Each dimension is a latent feature
* Common software package: word2vec

Italy: (—7.35,9.42,0.88,...) € RY0

° llMagic”
— + woman = queen
(analogies)



1.5

0.5

-1.5

China
Beijing
B Russia«
Japan«
i Moscow
Turkey Ankara -Tokyo
Polandk«
~ Germanyx
France AWarsaw
w Berlin
o ltaly: Paris
w —Athens
Greece«
. Spain Rome
y .
— Portugal Msb::_:‘adr'd
] ] | | | ]
-1.5 -1 -0.5 0.5 1 1.5




Mikolov et al. (2013a,b,c)

* Neural embeddings have interesting geometries
* These patterns capture “relational similarities”

e Can be used to solve analogies:
IS to woman as IS to queen



Mikolov et al. (2013a,b,c)

* Neural embeddings have interesting geometries
* These patterns capture “relational similarities”

* Can be used to solve analogies:
istoa“asbistob”



Mikolov et al. (2013a,b,c)

* Neural embeddings have interesting geometries
* These patterns capture “relational similarities”

* Can be used to solve analogies:
istoa“asbistob”

* With simple vector arithmetic:
_ a* — _ b*



Mikolov et al. (2013a,b,c)

— b~



Mikolov et al. (2013a,b,c)



Mikolov et al. (2013a,b,c)

b a” b*
King — + woman = gueen



Mikolov et al. (2013a,b,c)

b a” b*
Tokyo — + France = Paris



Mikolov et al. (2013a,b,c)

b a” b*
best — + strong = strongest



Mikolov et al. (2013a,b,c)

b a” b*
best — + strong = strongest

W

vectors in R"



On word embeddings - Part 1

12 de 20

http://sebastianruder.com/word-embeddings-1/

Input Window

Text cat sat on the mat

Feature 1 wi wi ... wh

Feature K wi wi “'.’\\"'

v
Lookup Table Y
LTy A~

LTywx A~
concat ]
—__comcat
Linear v
M! xé A~
HardTanh

-
Linear K—J
M2 xb A~

Figure 3: The C&W model without ranking objective
(Collobert et al., 2011)

The resulting language model produces embeddings that

$

already possess many of the relations word embeddings
have become known for, e.g. countries are clustered close
together and syntactically similar words occupy similar
locations in the vector space. While their ranking objective
eliminates the complexity of the softmax, they keep the
intermediate fully-connected hidden layer (2.) of Bengio et
al. around (the HardTanh layer in Figure 3), which constitutes
another source of expensive computation. Partially due to
this, their full model trains for seven weeks in total with

V| = 130000.

Word2Vec

Let us now introduce arguably the most popular word
embedding model, the model that launched a thousand
word embedding papers: word2vec, the subject of two
papers by Mikolov et al. in 2013. As word embeddings are a
key building block of deep learning models for NLP,
word2vec is often assumed to belong to the same group.
Technically however, word2vec is not be considered to be
part of deep learning, as its architecture is neither deep nor
uses non-Llinearities (in contrast to Bengio's model and the
C&W model.

23/6/17 10:17



On word embeddings - Part 1

13 de 20

http://sebastianruder.com/word-embeddings-1/

In their first paper [ 2 ], Mikolov et al. propose two
architectures for learning word embeddings that are
computationally less expensive than previous models. In
their second paper [ 31, they improve upon these models by
employing additional strategies to enhance training speed
and accuracy.

These architectures offer two main benefits over the C&W

model and Bengio's language model:

e They do away with the expensive hidden layer.

e They enable the language model to take additional

context into account.

As we will later show, the success of their model is not only
due to these changes, but especially due to certain training

strategies.

In the following, we will look at both of these architectures:

Continuous bag-of-words (CBOW)

While a language model is only able to look at the past
words for its predictions, as it is evaluated on its ability to
predict each next word in the corpus, a model that just aims
to generate accurate word embeddings does not suffer from
this restriction. Mikolov et al. thus use both the n words
before and after the target word w; to predict it as depicted
in Figure 4. They call this continuous bag-of-words (CBOW),
as it uses continuous representations whose order is of no

importance.

23/6/17 10:17



On word embeddings - Part 1 http://sebastianruder.com/word-embeddings-1/

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

SUM

> w(t)

w(t+1)

N

w(t+2)

Figure 4: Continuous bag-of-words (Mikolov et al., 2013)
The objective function of CBOW in turn is only slightly

different than the language model one:

M~

1
J@ = T logp(wl | Wi—ns "'aWt—l,Wt+1a'”,Wt+n)-
=1

Instead of feeding n previous words into the model, the
model receives a window of n words around the target word

w; at each time step t.

Skip-gram

While CBOW can be seen as a precognitive language model,
skip-gram turns the language model objective on its head:
Instead of using the surrounding words to predict the centre
word as with CBOW, skip-gram uses the centre word to

predict the surrounding words as can be seen in Figure 5.

14 de 20 23/6/17 10:17



On word embeddings - Part 1 http://sebastianruder.com/word-embeddings-1/

15 de 20

INPUT PROJECTION  OUTPUT

w(t-2)
% w(t-1)

wit) >
x w(t+1)
w(t+2)

Figure 5: Skip-gram (Mikolov et al., 2013)
The skip-gram objective thus sums the log probabilities of

the surrounding n words to the left and to the right of the

target word w; to produce the following objective:

S|
DM~

Jo = log p(wiyj | wy).

-~
I

1 —n<j<n,#0

To gain a better intuition of how the skip-gram model
computes p(w.; | wy). let's recall the definition of our

softmax;

exp(h' Viv,)
ZW,EV exp(hT vCVi ) |

P(Wt | Wiels s Wiept1) =

Instead of computing the probability of the target word wy
given its previous words, we calculate the probability of the
surrounding word wy; given wy. We can thus simply replace

these variables in the equation:

exp(h' V), )
ZW,EV CXp(l’lT V{’Vi) |

P(Wt+j | wy) =

As the skip-gram architecture does not contain a hidden
layer that produces an intermediate state vector h, h is
simply the word embedding v,,, of the input word w;. This

also makes it clearer why we want to have different

23/6/17 10:17



On word embeddings - Part 1 http://sebastianruder.com/word-embeddings-1/

16 de 20

representations for input embeddings v,, and output
embeddings v, as we would otherwise multiply the word

embedding by itself. Replacing & with v,,, yields:

T .
ZW,'EV exp(vwz v{’Vi )

p(Wt+j | wy) =

Note that the notation in Mikolov's paper differs slightly from
ours, as they denote the centre word with w; and the
surrounding words with wo. If we replace w; with wy, wy,;
with wp, and swap the vectors in the inner product due to its

commutativity, we arrive at the softmax notation in their

paper:

exp(Viy V)

v .
D=1 EXP(V Vi)

pwolwy) =

In the next post, we will discuss different ways to
approximate the expensive softmax as well as key training
decisions that account for much of skip-gram's success. We
will also introduce GloVe [ 51, a word embedding model
based on matrix factorisation and discuss the link between
word embeddings and methods from distributional

semantics.

Did | miss anything? Let me know in the comments below.

Other blog posts on word

embeddings

If you want to learn more about word embeddings, these

other blog posts on word embeddings are also available:

e On word embeddings - Part 2: Approximating the

23/6/17 10:17



156 13. NGRAM DETECTORS: CONVOLUTIONAL NEURAL NETWORKS
Max-pooling  The most common pooling operation is max pooling, taking the maximum value
across each dimension.
iy = max pipy Vi e[l (13.4)

pi;) denotes the jth component of p;. The effect of the max-pooling operation is to get the
most salient information across window positions. Ideally, each dimension will “specialize” in a
particular sort of predictors, and max operation will pick on the most important predictor of each
type.

Figure 13.2 provides an illustration of the convolution and pooling process with a max-
pooling operation.

s
the quick brown fox jumped over the lazy dog e \
the quick brown -.[©0©0000) ..f'j}[hﬁa;{g'\ . 'DQ C)|
quick brown fox Q00OOO|———C MUL+tanh S |Oﬁ o
brown fox jumped 0000 Q] < MULstanh >

fox jumped over

jumped over the

overthelazy — . |OOQOOO0

~ MUL+tanh,\—-' (DQ
000000|— MUL+tanh:/—"©@©

the lazy dog

convolution pooling

Figure 13.2: 1D convolution+pooling over the sentence “the quick brown fox jumped over the lazy
dog.” This is a narrow convolution (no padding is added to the sentence) with a window size of 3.
Each word is translated to a 2-dim embedding vector (not shown). The embedding vectors are then
concatenated, resulting in 6-dim window representations. Each of the seven windows is transfered
through a 6 x 3 filter (linear transformation followed by element-wise tanh), resulting in seven 3-
dimensional filtered representations. Then, a max-pooling operation is applied, taking the max over
each dimension, resulting in a final 3-dimensional pooled vector.

Average Pooling  The second most common pooling type being average-pooling—taking the
average value of each index instead of the max:

1
c = ZZP;‘. (13-5)

i=1




164 14. RECURRENT NEURAL NETWORKS: MODELING SEQUENCES AND STACKS
14.1 THE RNN ABSTRACTION

We use x;.; to denote the sequence of vectors x;, . .., xj. On a high-level, the RNN is a function
that takes as input an arbitrary length ordered sequence of n d;,-dimensional vectors X1, =
X1,X2,...,Xn, (x; € R%) and returns as output a single d,,, dimensional vector y, € Rou;

yn = RNN(x1:s) (14.1)

X; € R Yn € R %,
'This implicitly defines an output vector y; for each prefix x1:; of the sequence x1:,. We

denote by RNN™* the function returning this sequence:

Yi:n = RNN*(xI:n)
vi = RNN(x 1)

(14.2)

X; € R%n Yi € R %o

'The output vector y, is then used for further prediction. For example, a model for predict-
ing the conditional probability of an event e given the sequence x1:, can be defined as p(e =
J1x1:n) = softmax(RNN(x1:,) - W + b)[jj, the jth element in the output vector resulting from
the softmax operation over a linear transformation of the RNN encoding y, = RNN(x1:,). The
RNN function provides a framework for conditioning on the entire history x1, ..., x; without
resorting to the Markov assumption which is traditionally used for modeling sequences, described
in Chapter 9. Indeed, RNN-based language models result in very good perplexity scores when
compared to ngram-based models.

Looking in a bit more detail, the RNN is defined recursively, by means of a function R
taking as input a state vector s;—1 and an input vector x; and returning a new state vector ;.
'The state vector s; is then mapped to an output vector y; using a simple deterministic function
O(-).” 'The base of the recursion is an initial state vector, s¢, which is also an input to the RNN.
For brevity, we often omit the initial vector s¢, or assume it is the zero vector.

When constructing an RNN, much like when constructing a feed-forward network, one
has to specify the dimension of the inputs x; as well as the dimensions of the outputs y;. The
dimensions of the states s; are a function of the output dimension.”

Using the O function is somewhat non-standard, and is introduced in order to unify the different RNN models to to be
presented in the next chapter. For the Simple RNN (Elman RNN) and the GRU architectures, O is the identity mapping,
and for the LSTM architecture O selects a fixed subset of the state.

*While RNN architectures in which the state dimension is independent of the output dimension are possible, the current

popular architectures, including the Simple RNN, the LSTM, and the GRU do not follow this flexibility.



14.1. THE RNN ABSTRACTION 165

RNN* (x];n; SO) =.Yl:n
Yi =0(si) (14.3)

si =R(si-1.x;)

X; c Rdin’ yl = Rdout’ Si = Rf(dout)_

'The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector s; that is kept and being passed across
invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 14.1.

Yi

$i-1 *»‘ R, O }—» S

|

%

Figure 14.1: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrarily long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite) one
can unroll the recursion, resulting in the structure in Figure 14.2.

While not usually shown in the visualization, we include here the parameters 6 in order to high-
light the fact that the same parameters are shared across all time steps. Different instantiations of
R and O will result in different network structures, and will exhibit different properties in terms
of their running times and their ability to be trained effectively using gradient-based methods.
However, they all adhere to the same abstract interface. We will provide details of concrete in-
stantiations of R and O—the Simple RNN, the LSTM, and the GRU—in Chapter 15. Before
that, let’s consider working with the RNN abstraction.




166 14. RECURRENT NEURAL NETWORKS: MODELING SEQUENCES AND STACKS
b4 ! y2 y3 Y4 Y5

soﬁ RO M RO P»‘ RO P»‘ R, O % RO }—»ss
X4

X1 X2 X3 X5

Figure 14.2: Graphical representation of an RNN (unrolled).

First, we note that the value of s; (and hence y;) is based on the entire input x1,. .., x;.
For example, by expanding the recursion for i = 4 we get:

s4 =R(s3,x4)
s3
—_——
=R(R(s2,x3),x4)
52 (14.4)

—_——

=R(R(R(s1,x2),x3),x4)
1

——
=R(R(R(R(s9,x1),Xx2),X3),Xx4).

Thus, s, and y, can be thought of as encoding the entire input sequence.” Is the encoding
useful? This depends on our definition of usefulness. The job of the network training is to set the
parameters of R and O such that the state conveys useful information for the task we are tying to
solve.

14.2 RNN TRAINING

Viewed as in Figure 14.2 it is easy to see that an unrolled RNN is just a very deep neural network
(or rather, a very large computation graph with somewhat complex nodes), in which the same pa-
rameters are shared across many parts of the computation, and additional input is added at various
layers. To train an RNN network, then, all we need to do is to create the unrolled computation
graph for a given input sequence, add a loss node to the unrolled graph, and then use the backward

“Note that, unless R is specifically designed against this, it is likely that the later elements of the input sequence have stronger
effect on §,, than earlier ones.



	part1
	part2
	part3
	part4
	part5
	part6

