Improving the Competency of First-Order Ontologies

Javier Álvez Paqui Lucio German Rigau

University of the Basque Country LoRea & IXA NLP Groups

K-Cap 2015 – The 8th International Conference on Knowledge Capture
October 7-10, 2015, Palisades, NY, USA

Funded by SKaTer (TIN2012-38584-C06-02), COMMAS (TIN2013-46181-C2-2-R) and LoRea (GIU12/26)
Development of First-Order Ontologies

- Our research focuses on first-order ontologies (e.g., SUMO)
- Its development requires an iterative and manual process of refinement and evaluation [1]
- For its evaluation, one may consider their use in applications when performing correct predictions
 - Very small data-sets are available (38 conjectures)
Grüninger & Fox proposed a methodology for the evaluation of ontologies [3].

The methodology is based on Competency Questions (CQs):
- Goals that the ontology is expected to answer

Obtaining CQs is not automatic but creative [2].

Creating a suitable set of CQs is a very challenging and costly task.

This methodology has not been previously applied using first-order logic (FOL) automatic theorem provers (ATPs).
Our Contributions

- A new framework to evaluate and improve the competency of first-order (FO) ontologies using ATPs
- A new set of very large and non-trivial CQs:
 - 64 creative tests, including the 33 CQs from the CSR (Common Sense Reasoning) problem domain of TPTP (Thousands of Problems for Theorem Provers) and the 5 CQs from [1]
 - 7,112 automatic tests, obtained from a small set of conceptual patterns on the basis of the knowledge in WordNet and its mapping to SUMO
- An improved version of Adimen-SUMO (v2.4)
INTRODUCTION

FIRST-ORDER VERSIONS OF SUMO

OUR FRAMEWORK

AUTOMATICALLY OBTAINING CQS

IMPROVING AND EVALUATING ADIMEN-SUMO

CONCLUSIONS AND ONGOING WORK

REFERENCES
SUMO

- *Suggested Upper Merged Ontology*
- Pushed by the *IEEE Standard Upper Ontology* Working Group
- Its goal is to promote data interoperability, information search and retrieval, automated inference and natural language processing
- SUMO syntax goes beyond FOL
Two different proposals:
- TPTP-SUMO [4], which can be found in the TPTP Library
- Adimen-SUMO [1], which can be found in http://adimen.si.ehu.es/web/AdimenSUMO

Those ontologies only inherit information from the top and the middle levels of SUMO

Some figures:

<table>
<thead>
<tr>
<th></th>
<th>SUMO</th>
<th>TPTP-SUMO</th>
<th>Adimen-SUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects</td>
<td>20,081</td>
<td>2,920</td>
<td>1,009</td>
</tr>
<tr>
<td>Classes</td>
<td>5,563</td>
<td>2,086</td>
<td>2,124</td>
</tr>
<tr>
<td>Relations</td>
<td>369</td>
<td>208</td>
<td>208</td>
</tr>
<tr>
<td>Attributes</td>
<td>2,153</td>
<td>68</td>
<td>66</td>
</tr>
<tr>
<td>Total</td>
<td>28,166</td>
<td>5,282</td>
<td>3,407</td>
</tr>
</tbody>
</table>
Using FOL ATPs

- Vampire v3.0 (and other FOL ATPs) works by refutation within an execution-time limit.
- The methodology proposed by Grüninger & Fox consists in proving *completeness theorems*:
 - Checking whether a CQ is entailed by the ontology *or not*.
- Theoretically, if the conjecture is entailed, ATPs will find a refutation.
- But ATPs do not find a refutation for every entailed conjecture:
 - If ATPs find a proof, it is sure that the CQ is entailed.
 - If not, there are two possibilities:
 - The CQ is not entailed.
 - The CQ is entailed, but ATPs cannot find a proof within the execution-time limit.
The set of CQs is partitioned into two classes:

- **Truth-tests**: expected to be entailed

\[
(\Rightarrow \\
\text{(and)} \\
\text{(instance } ?\text{HUMAN Human)} \\
\text{(attribute } ?\text{HUMAN Pregnant)}) \\
\text{(not)} \\
\text{(instance } ?\text{HUMAN Man}))
\]

- **Falsity-tests**: expected not to be entailed

\[
(\Rightarrow \\
\text{(instance } ?\text{ORG Organism)} \\
\text{(not)} \\
\text{(attribute } ?\text{ORG Dead}))
\]
Tests may be classified as:

(A) *Passing*
(B) *Non-passing*
(C) *Unknown*

The method proceeds in two steps:

First step – Truth-tests
- If ATPs find a proof, the test is classified as *passing*
- Otherwise, the test is classified as *unknown*

Second step – Falsity-tests
- If ATPs find a proof, the test is classified as *non-passing*
- Otherwise, the test is classified as *unknown*
Improvement

- Two cases:
 - Non-passing falsity-tests:
 - The proof provided by ATPs includes the incorrect axioms
 - Unknown truth-tests:
 - Increase the execution-time limit
 - Manually checking the ontology with the help of ATPs
 - Decomposing the conjecture into several subgoals and try to prove the subgoals by separate
 - Picking by hand the axioms in the ontology that should enable the proof

- Typical problems:
 - Undefined concepts
 - Incomplete definition of properties
 - Unsuitable characterization of meta-concepts
The Mapping from WordNet to SUMO

- Each synset of WordNet is connected into a SUMO concept using 3 relations (and its complementaries):
 - Equivalence
 - Subsumption
 - Instance

- The mapping uses the top and middle level of SUMO, but also the domain ontologies:
 - \(education^4_n \mapsto EducationalProcess^+ \) (Top level)
 - \(zero^1_a \mapsto Integer^@ \) (Top level)
 - \(frying^1_n \mapsto Frying= \) (\textit{Food} ontology)

- Adimen-SUMO (and TPTP-SUMO) only inherits information from the top and middle levels of SUMO
Inheriting a Mapping from WordNet to Adimen-SUMO

- On the basis the structural relations of SUMO:
 - instance
 - subclass
 - subrelation
 - subAttribute

- For example:

\[
\begin{align*}
\text{Cooking}^+ \quad &\quad \text{(Top level)} \\
\text{frying}^1_n \quad &\quad \leftrightarrow \quad \text{Frying} = \quad \text{(Food ontology)}
\end{align*}
\]
Automatically Obtaining CQs

Different conceptual patterns based on:

- **Antonym-pairs** provided by WordNet:

 $frozen^1_n$ vs. $liquescent^1_n$

- The morphosemantic database of WordNet, which contains semantics relations between morphologically related nouns and verbs

 - *agent*, *result* and *instrument*

 The result of $compose^2_v$ is a $composition^4_n$

 - *event*

 $kill^{10}_v$ and $killing^2_n$ denote the same event
Antonym Patterns

- WordNet provides 8,689 antonym-pairs
 - In 190 antonym-pairs, both synsets are connected using equivalence
- Two conceptual patterns, focusing on classes and attributes
- We obtain 64 truth-tests
 - By negation, we also obtain 64 falsity-tests
Antonym Patterns: Classes

- Two SUMO classes connected to antonym synsets of WordNet cannot have common instances
- Example:
 - \(\text{frozen}_n^1\) and \(\text{liquescent}_n^1\) are antonym:

\[
\begin{align*}
\text{frozen}_n^1 & \mapsto \text{Freezing} = \\
\text{liquescent}_n^1 & \mapsto \text{Melting} =
\end{align*}
\]

- Proposed truth-test:

\[
(\text{not} (\exists ?X) (\text{and} (\text{instance ?X Freezing}) (\text{instance ?X Melting})))
\]
Antonym Patterns: Attributes

- Two SUMO attributes connected to antonym synsets of WordNet are not compatible

 - Example:
 - \(waking_1 \) and \(sleeping_1 \) are antonym:

 \[
 \begin{align*}
 &waking_1 \quad \mapsto \quad Awake= \\
 &sleeping_1 \quad \mapsto \quad Asleep=
 \end{align*}
 \]

 - Proposed truth-test:

 \[
 \text{(not} \quad (\exists \ ?X) \quad (\text{and} \quad (\text{attribute} \ ?X \ \text{Awake}) \quad (\text{attribute} \ ?X \ \text{Asleep})))\]
Relation Patterns: _agent, result, instrument_

- _agent, result_ and _instrument_ relate a process (verb) with its corresponding agent / result / instrument (noun)
- We obtain **1,280 truth-tests** by stating the same property in terms of SUMO
 - By negation, we also obtain **1,280 falsity-tests**
- Example:
 - The _result_ of _compose^2_v_ is a _composition^4_n_:

\[
\text{compose}^2_v \mapsto \text{ComposingMusic} + \\
\text{composition}^4_n \mapsto \text{MusicalComposition}
\]

- Proposed truth-test:

\[
\text{(exists} \ (?X \ ?Y) \\
\text{and} \\
\text{(instance} \ ?X \ \text{ComposingMusic}) \\
\text{(result} \ ?X \ ?Y) \\
\text{(instance} \ ?Y \ \text{MusicalComposition})))
\]
Relation Patterns: event

- *event* connects nouns and verbs referring to the **same process**
- Being the same process, the noun and the verb should be mapped to the same SUMO class
 - If not, we suppose that the mapping is wrong
- From 3 conceptual patterns depending on the mapping relations, we obtain **2,212 truth-tests/falsity-tests** by stating that the mapping is wrong/correct
- Example:
 - $kill^1_{10}$ and $killing^2_n$ are related by *event*:

 $kill^1_{10} \mapsto \text{Death}= \quad killing^2_n \mapsto \text{Killing}=

 - Proposed truth-test:

 \[\text{not} \ (\text{equal Death Killing}) \]
Improving Adimen-SUMO

- We have applied our framework to Adimen-SUMO v2.2
- We have used the set of 64 creative tests as a dataset for development
 - 50 truth-tests (12 new)
 - 14 falsity-tests (all new)
- Summary:
 - 15 truth-tests were classified as *unknown*
 - 1 falsity-test was classified as *non-passing*
- As result, we have obtained Adimen-SUMO v2.4
Evaluating the Competency of Adimen-SUMO

- We have evaluated the competency of TPTP-SUMO, Adimen-SUMO v2.2 and Adimen-SUMO v2.4
- Vampire v3.0 (execution-time limit: 600 seconds)

<table>
<thead>
<tr>
<th></th>
<th>TPTP-SUMO</th>
<th>Adimen-SUMO v2.2</th>
<th>Adimen-SUMO v2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth-tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antonym pattern (64)</td>
<td>3</td>
<td>17</td>
<td>45</td>
</tr>
<tr>
<td>Relation pattern (1,280)</td>
<td>0</td>
<td>11</td>
<td>176</td>
</tr>
<tr>
<td>Event pattern #1 (25)</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Event pattern #2 (330)</td>
<td>0</td>
<td>26</td>
<td>115</td>
</tr>
<tr>
<td>Event pattern #3 (1,857)</td>
<td>1</td>
<td>33</td>
<td>551</td>
</tr>
<tr>
<td>Total (3,556)</td>
<td>4</td>
<td>89</td>
<td>894</td>
</tr>
</tbody>
</table>

Falsity-tests	Non-passing	Non-passing	Non-passing
Antonym pattern (64)	4	2	5
Relation pattern (1,280)	4	31	22
Event pattern #1 (25)	0	0	0
Event pattern #2 (330)	71	72	72
Event pattern #3 (1,857)	387	388	388
Total (3,556)	466	493	487
Evaluating the Competency of Adimen-SUMO:

Summary

- Adimen-SUMO v2.4 clearly outperforms Adimen-SUMO v2.2 and TPTP-SUMO in the truth-test category.
- The results in the falsity-test category are quite similar.
- Non-passing and unknown tests may be due to:
 - The mapping
 - WordNet relations
 - The ontology itself
- Some CQ may be unsuitable.
Evaluating the Efficiency of Adimen-SUMO

- We have also evaluated the efficiency of Adimen-SUMO v2.4
- In particular:
 - More and more complex truth-tests are solved as the execution-time limit becomes longer
 - On the contrary, the number of non-passing falsity-tests does not substantially increases

These results will be presented in the poster session
Conclusions and Ongoing Work (I)

Using our framework, we have successfully evaluated and improved the competency of Adimen-SUMO

Additionally:

- Our framework also enables to measure the efficiency of ontologies when solving CQs
- Our framework can act as a new benchmark for testing the performance of FOL ATPs

Adimen-SUMO, our benchmark dataset of 7,112 CQs and execution reports are freely available:

http://adimen.si.ehu.es/web/AdimenSUMO
Conclusions and Ongoing Work (II)

- We are correcting:
 - Adimen-SUMO
 - Some mappings from WordNet to SUMO
 - Some WordNet relations

- We are improving and enlarging our current set of CQs

- We also plan to automatically exploit Adimen-SUMO and the mapping to WordNet:
 - Inferring new semantic relations between WordNet concepts
 - Validating the consistency of resources such as Cyc, DBpedia or Yago
References

J. Álvez, P. Lucio, and G. Rigau.
Adimen-SUMO: Reengineering an ontology for first-order reasoning.

M. Fernández-López, A. Gómez-Pérez, and M. C. Suárez-Figueroa.
Methodological guidelines for reusing general ontologies.

M. Grüninger and M. S. Fox.
Methodology for the design and evaluation of ontologies.

A. Pease and G. Sutcliffe.
First-order reasoning on a large ontology.