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1 Introduction
This paper describes the TALP system on the En-
glish Lexical Sample task of the Senseval-31 event.
The system is fully supervised and relies on a par-
ticular Machine Learning algorithm, namely Sup-
port Vector Machines. It does not use extra exam-
ples than those provided by Senseval-3 organisers,
though it uses external tools and ontologies to ex-
tract part of the representation features.

Three main characteristics have to be pointed out
from the system architecture. The first thing is the
way in which the multiclass classification problem
posed by WSD is addressed using the binary SVM
classifiers. Two different approaches for binarizing
multiclass problems have been tested: one–vs–all
and constraint classification. In a cross-validation
experimental setting the best strategy has been se-
lected at word level. Section 2 is devoted to explain
this issue in detail.

The second characteristic is the rich set of fea-
tures used to represent training and test examples.
Topical and local context features are used as usual,
but also syntactic relations and semantic features in-
dicating the predominant semantic classes in the ex-
ample context are taken into account. A detailed
description of the features is presented in section 3.

And finally, since each word represents a learning
problem with different characteristics, a per–word
feature selection has been applied. This tuning pro-
cess is explained in detail in section 4.

The last two sections discuss the experimental re-
sults (section 5) and present the main conclusions of
the work performed (section 6).

2 Learning Framework
The TALP system belongs to the supervised Ma-
chine Learning family. Its core algorithm is the
Support Vector Machines (SVM) learning algorithm
(Cristianini and Shawe-Taylor, 2000). Given a set
of binary training examples, SVMs find the hy-
perplane that maximizes the margin in a high di-
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mensional feature space (transformed from the in-
put space through the use of a non-linear function,
and implicitly managed by using the kernel trick),
i.e., the hyperplane that separates with maximal dis-
tance the positive examples from the negatives. This
learning bias has proven to be very effective for pre-
venting overfitting and providing good generalisa-
tion. SVMs have been also widely used in NLP
problems and applications.

One of the problems in using SVM for the WSD
problem is how to binarize the multiclass classifi-
cation problem. The two approximations tested in
the TALP system are the usual one–vs–all and the
recently introduced constraint–classification frame-
work (Har-Peled et al., 2002).

In the one–vs–all approach, the problem is de-
composed into as many binary problems as classes
has the original problem, and one classifier is
trained for each class trying to separate the exam-
ples of that class (positives) from the examples of
all other classes (negatives). This method assumes
the existence of a separator between each class and
the set of all other classes. When classifying a new
example, all binary classifiers predict a class and
the one with highest confidence is selected (winner–
take–all strategy).

2.1 Constraint Classification

Constraint classification (Har-Peled et al., 2002) is
a learning framework that generalises many multi-
class classification and ranking schemes. It consists
of labelling each example with a set of binary con-
straints indicating the relative order between pairs
of classes. For the WSD setting of Senseval-3, we
have one constraint for each correct class (sense)
with each incorrect class, indicating that the clas-
sifier to learn should give highest confidence to the
correct classes than to the negatives. For instance, if
we have 4 possible senses {1, 2, 3, 4} and a training
example with labels 2 and 3, the constraints corre-
sponding to the example are {(2>1), (2>4), (3>1),
and (3>4)}. The aim of the methodology is to learn
a classifier consistent with the partial order defined



by the constraints. Note that here we are not as-
suming that perfect separators can be constructed
between each class and the set of all other classes.
Instead, the binary decisions imposed are more con-
servative.

Using Kesler’s construction for multiclass classi-
fication, each training example is expanded into a
set of (longer) binary training examples. Finding
a vector–based separator in this new training set is
equivalent to find a separator for each of the binary
constraints imposed by the problem. The construc-
tion is general, so we can use SVMs directly on the
expanded training set to solve the multiclass prob-
lem. See (Har-Peled et al., 2002) for details.

3 Features

We have divided the features of the system in 4 cat-
egories: local, topical, knowledge-based and syn-
tactic features. First section of table 1 shows the
local features. The basic aim of these features
is to modelize the information of the surrounding
words of the target word. All these features are ex-
tracted from a ±3–word–window centred on the tar-
get word. The features also contain the position of
all its components. To obtain Part–of–Speech and
lemma for each word, we used FreeLing 2. Most
of these features have been doubled for lemma and
word form.

Three types of Topical features are shown in the
second section of table 1. Topical features try to
obtain non–local information from the words of the
context. For each type, two overlapping sets of
redundant topical features are considered: one ex-
tracted from a ±10–word–window and another con-
sidering all the example.

The third section of table 1 presents the
knowledge–based features. These features have
been obtained using the knowledge contained into
the Multilingual Central Repository (MCR) of the
MEANING project3 (Atserias et al., 2004). For each
example, the feature extractor obtains, from each
context, all nouns, all their synsets and their associ-
ated semantic information: Sumo labels, domain la-
bels, WordNet Lexicographic Files, and EuroWord-
Net Top Ontology. We also assign to each label a
weight which depends on the number of labels as-
signed to each noun and their relative frequencies
in the whole WordNet. For each kind of seman-
tic knowledge, summing up all these weights, the
program finally selects those semantic labels with
higher weights.

2http://www.lsi.upc.es/∼nlp/freeling
3http://www.lsi.upc.es/˜meaning

local feats.
Feat. Description
form form of the target word
locat all part–of–speech / forms / lemmas in

the local context
coll all collocations of two part–of–speech /

forms / lemmas
coll2 all collocations of a form/lemma and a

part–of–speech (and the reverse)
first form/lemma of the first noun / verb /

adjective / adverb to the left/right of the
target word

topical feats.
Feat. Description
topic bag of forms/lemmas
sbig all form/lemma bigrams of the example
comb forms/lemmas of consecutive (or not)

pairs of the open–class–words in the
example
knowledge-based feats.

Feat. Description
f sumo first sumo label
a sumo all sumo labels
f semf first wn semantic file label
a semf all wn semantic file labels
f tonto first ewn top ontology label
a tonto all ewn top ontology labels
f magn first domain label
a magn all domain labels

syntactical feats.
Feat. Description
tgt mnp syntactical relations of the target word

from minipar
rels mnp all syntactical relations from minipar
yar noun NounModifier, ObjectTo, SubjectTo

for nouns
yar verb Object, ObjectToPreposition, Preposi-

tion for verbs
yar adjs DominatingNoun for adjectives

Table 1: Feature Set

Finally, the last section of table 1 describes
the syntactic features which contains features ex-
tracted using two different tools: Dekang Lin’s
Minipar4 and Yarowsky’s dependency pattern ex-
tractor.

It is worth noting that the set of features presented
is highly redundant. Due to this fact, a feature se-
lection process has been applied, which is detailed
in the next section.

4 Experimental Setting
For each binarization approach, we performed a fea-
ture selection process consisting of two consecutive
steps:

4http://www.cs.ualberta.ca/∼lindek/minipar.htm



• POS feature selection: Using the Senseval–2
corpus, an exhaustive selection of the best set
of features for each particular Part–of–Speech
was performed. These feature sets were taken
as the initial sets in the feature selection pro-
cess of Senseval-3.

• Word feature selection: We applied a
forward(selection)–backward(deletion) two–
step procedure to obtain the best feature
selection per word. For each word, the process
starts with the best feature set obtained in the
previous step according to its Part–of–Speech.
Now, during selection, we consider those
features not selected during POS feature
selection, adding all features which produce
some improvement. During deletion, we con-
sider only those features selected during POS
feature selection, removing all features which
produces some improvement. Although this
addition–deletion procedure could be iterated
until no further improvement is achieved, we
only performed a unique iteration because
of the computational overhead. One brief
experiment (not reported here) for one–vs–all
achieves an increase of 2.63% in accuracy
for the first iteration and 0.52% for a second
one. First iteration improves the accuracy of
53 words and the second improves only 15.
Comparing the evolution of these 15 words,
the increase in accuracy is of 2.06% for the
first iteration and 1.68% for the second one.
These results may suggest that accuracy could
be increased by this iteration procedure.

The result of this process is the selection of the
best binarization approach and the best feature set
for each individual word.

Considering feature selection, we have inspected
the selected attributes for all the words and we ob-
served that among these attributes there are fea-
tures of all four types. The most selected features
are the local ones, and among them those of ’first
noun/adjective on the left/right’; from topical fea-
tures the most selected ones are the ’comb’ and in a
less measure the ’topic’; from the knowledge–based
the most selected feature are those of ’sumo’ and
’domains labels’; and from syntactical ones, those
of ’Yarowsky’s patterns’. All the features previ-
ously mentioned where selected at least for 50 of
the 57 Senseval–3 words. Even so, it is useful the
use of all features when a selection procedure is ap-
plied. These general features do not work fine for
all words. Some words make use of the less selected
features; that is, every word is a different problem.

Regarding the implementation details of the sys-
tem, we used SVMlight (Joachims, 2002), a very ro-
bust and complete implementation of Support Vec-
tor Machines learning algorithms, which is freely
available for research purposes5 . A simple lineal
kernel with a regularization C value of 0.1 was
applied. This parameter was empirically decided
on the basis of our previous experiments on the
Senseval–2 corpus. Additionally, previous tests us-
ing non–linear kernels did not provide better results.

The selection of the best feature set and the bi-
narization scheme per word described above, have
been performed using a 5-fold cross validation pro-
cedure on the Senseval-3 training set. The five parti-
tions of the training set were obtained maintaining,
as much as possible, the initial distribution of exam-
ples per sense.

After several experiments considering the ’U’ la-
bel as an additional regular class, we found that we
obtained better results by simply ignoring it. Then,
if a training example was tagged only with this la-
bel, it was removed from the training set. If the ex-
ample was tagged with this label and others, the ‘U’
label was also removed from the learning example.
In that way, the TALP system do not assigns ‘U’
labels to the test examples.

Due to lack of time, the TALP system presented
at the competition time did not include a com-
plete model selection for the constraint classifica-
tion binarization setting. More precisely, 14 words
were processed within the complete model selection
framework, and 43 were adjusted with a fixed one–
vs–all approach but a complete feature selection.
After the competition was closed, we implemented
the constraint classification setting more efficiently
and we reprocessed again the data. Section 5 shows
the results of both variants.

A rough estimation of the complete model selec-
tion time for both approaches is the following. The
training spent about 12 hours (OVA setting) and 5
days (CC setting) to complete6 , suggesting that the
main drawback of these approaches is the computa-
tional overhead. Fortunately, the process time can
be easily reduced: the CC layer could be ported
from Perl to C++ and the model selection could be
easily parallelized (since the treatment of each word
is independent).

5 Results
Table 2 shows the accuracy obtained on the train-
ing set and table 3 the results of our system (SE3,

5http://svmlight.joachims.org
6These figures were calculated using a 800 MHz Pentium

III PC with 320 Mb of memory.



TALP), together with the most frequent sense base-
line (mfs), the recall result of the best system in the
task (best), and the recall median between all par-
ticipant systems (avg). These last three figures were
provided provided by the organizers of the task.

OVA(base) in table 2 stands for the results of the
one–vs–all approach on the starting feature set (5–
fold–cross validation on the training set). CC(base)
refers to the constrain–classification setting on the
starting feature set. OVA(best) and CC(best) mean
one–vs–all and constraint–classification with their
respective feature selection. Finally, SE3 stands for
the system officially presented at competition time7

and TALP stands for the complete architecture.

method accuracy
OVA(base) 72 38%
CC(base) 72.28%
OVA(best) 75.27%
CC(best) 75.70%
SE3 75.62%
TALP 76.02%

Table 2: Overall results of all system variants on the
training set

It can be observed that the feature selection pro-
cess consistently improves the accuracy by around
3 points, both in OVA and CC binarization set-
tings. Constraint–classification is slightly better
than one–vs–all approach when feature selection
is performed, though this improvement is not con-
sistent along all individual words (detailed results
omitted) neither statistically significant (z–test with
0.95 confidence level). Finally, the combined
binarization–feature selection further increases the
accuracy in half a point (again this difference is not
statistically significant).

measure mfs avg best SE3 TALP
fine 55.2 65.1 72.9 71.3 71.6
coarse 64.5 73.7 79.5 78.2 78.2

Table 3: Overall results on the Senseval-3 test set

However, when testing the complete architecture
on the official test set, we obtained an accuracy de-
crease of more than 4 points. It remains to be ana-
lyzed if this difference is due to a possible overfit-
ting to the training corpus during model selection,
or simply is due to the differences between train-
ing and test corpora. Even so, the TALP system
achieves a very good performance, since there is a

7Only 14 words were processed with the full architecture.

difference of only 1.3 points in fine and coarse re-
call respect to the best system of the English lexical
sample task of Senseval–3.

6 Conclusions
Regarding supervised Word Sense Disambiguation,
each word can be considered as a different classi-
fication problem. This implies that each word has
different feature models to describe its senses.

We have proposed and tested a supervised sys-
tem in which the examples are represented through
a very rich and redundant set of features (using the
information content coherently integrated within the
Multilingual Central Repository of the MEANING

project), and which performs a specialized selection
of features and binarization process for each word.
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