
Jason: A Java-based interpreter for
an extended version of AgentSpeak

developed by
Rafael H. Bordini and Jomi F. Hübner

http://jason.sourceforge.net/Jason.pdf

The work leading to Jason received many contributions, in
particular from: Michael Fisher, Joyce Martins, Álvaro F.

Moreira, Renata Vieira, Willem Visser, Michael Wooldridge,
and many others

1

http://jason.sourceforge.net/Jason.pdf

Jason
Part 1
• What is AgentSpeak?
• What is Jason?
• Features
• Basic Notions
• AgentSpeak(L) Syntax
• AgentSpeak(L) Informal Semantics
• Jason Reasoning Cycle
• A Simple Examples

2

What is AgentSpeak?
• A simple but powerful programming language

for building rational agents based on the
Belief-Desire-Intention paradigm.

• Intellectual heritage:
– The Procedural Reasoning Systems (PRS)

developed at Stanford Research Institute in late
1980s

– Logic Programming/Prolog

3

What is Jason?

4

Jason is the first fully-fledged interpreter
for a much improved version of

AgentSpeak, including also speech-act
based inter-agent communication.

Jasón y Medea, de Gustave
Moreau (Museo de Orsay).

https://es.wikipedia.org/wiki/Medea_(mitolog%C3%ADa)
https://es.wikipedia.org/wiki/Gustave_Moreau
https://es.wikipedia.org/wiki/Gustave_Moreau
https://es.wikipedia.org/wiki/Gustave_Moreau
https://es.wikipedia.org/wiki/Museo_de_Orsay

Features (1)
• Strong negation, so both closed-world assumption and

open-world are available;
– Closed World Assumption: anything that is neither known to be true, nor

derivable from the known facts or inferences, is assumed to be false.

– “not” operator means that the negation of the formula is true if the
interpreter fails to to derive the formula given the fatcs and rules.

– “~” or strong negation means that the formula is false.

– Example:
● colour(box1,white), when the agent believes that box1 is white.
● ~colour(box1,white), when the agent belives that box1 is not white.
● If both (not p) and (not ~p) are true, the agent has no information about

whether p is true or not

5

Features (2)

• Speech-act based inter-agent communication (and belief
annotations on information sources);

• Possibility to run a multi-agent system distributed over a
network (using SACI);

• A library of essential “internal actions” which are
programmed in Java.

• Handling of plan,

• …

6

http://www.emse.fr/~boissier/enseignement/maop12/doc/jason-api/jason/asSemantics/class-use/DefaultInternalAction.html

Basic Notions
• An AgentSpeak(L) agent is created by the

specification of a set of base beliefs and a set of
plans.

• A belief atom is simply a first-order predicate in the
usual notation- publisher(wiley)

• A triggering event defines which events may initiate
the execution of a plan.

• The goals are also predicates prefixed with operators:
‘!’ (achievement goals)- !write(book) and ‘?’ (test
goals)- ?publisher(P)

7

Basic Notions
• An event can be internal, when a subgoal needs to

be achieved, or external, when generated from
belief updates as a result of perceiving the
environment.

• There are two types of triggering events: those
related to the addition (‘+’) and deletion (‘-’) of
mental attitudes (beliefs or goals).

• Plans refer to the basic actions that an agent is able
to perform on its environment.

8

Basic Notions
• Actions are also defined as first-order predicates, but

with special predicate symbols (called action
symbols) used to distinguish them from other
predicates.

• A plan is formed by a triggering event (denoting the
purpose for that plan), followed by a conjunction of
belief literals representing a context (applicable) and
a sequence of basic actions or (sub)goals:
triggering_event : context <- body.
+concert(A,V) : likes(A) ← !book_tickets(A,V).
+!book_tickets(A,V) : ¬busy(phone) ←
 call(V); . . .; !choose_seats(A,V).

9

Basic Notions
• Triggering event s:

• +b (belief addition)
• -b (belief deletion)
• +!g (achievement-goal addition)
• -!g (achievement-goal deletion)
• +?g (test-goal addition)
• -?g (test-goal deletion)

10

AgentSpeak(L) Syntax
ag ::= bs ps

bs ::= at1. . . . atn. (n ≥ 0)

at ::= P(t1, . . . ,tn) (n ≥ 0)

ps ::= p1 . . . pn (n ≥ 1)

p ::= te : ct <- h .

te ::= +at | -at | +g | -g

ct ::= true | l1 & . . . & ln (n ≥ 1)

h ::= true | f1 ; . . . ; fn (n ≥ 1)

l ::= at | not at

f ::= A(t1, . . . ,tn) | g | u (n ≥ 0)

g ::= !at | ?at

u ::= +at | -at
11

ag- agent ::= bs- belives ps- plans

p ::= te-trigering event : ct-context
<- h- sequence of actions, goals,
or belief updates.

at - addition or the deletion of a
belief

g- addition or the deletion of a goal

A(t1, . . . ,tn) - accion

Jason Reasoning Cycle

12

A Simple Example
Collecting Garbage

The scenario used here involves two robots that are collecting garbage on planet
Mars(1). Robot r1 searches for pieces of garbage and when one is found, the
robot picks it up, take it to the location of r2, drops the garbage there, and
return to the location where it found the garbage and continues its search from
that position. Robot r2 is situated at an incinerator; whenever garbage is taken
to its location by r1, r2 just puts it in the incinerator.

13

(1) Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge. Verifiable multi-agent
programs. M. Dastani, J. Dix, A. El Fallah-Seghrouchni (Eds.) In Proceedings of the First International
Workshop on Programming Multiagent Systems: languages, frameworks, techniques and tools
(ProMAS-03). LNAI 3067, pp. 72-89 Springer-Verlag Berling Heidelberg 2004.

A Simple Examples: Collecting Garbage

Agent r1
Beliefs

pos(r2, 2, 2).
checking(slots).

Plans
+pos(r1, X, Y) : checking(slots) & not garbage(r1) (p1)

<- next(slot). (simple action)
+garbage(r1) : checking(slots) (p2)

<- !stop(check); !take(garb,r2); !continue(check).
+!stop(check) : true (p3)

<- ?pos(r1, X, Y); +pos(back, X, Y); -checking(slots).
+!take(S, L) : true (p4)

<- !ensure_pick(S); !go(L); drop(S).
14

A Simple Examples: Collecting Garbage

Agent r1

Plans

+!ensure_pick(S) : garbage(r1) (p5)

<- pick(garb); !ensure_pick(S).

+!ensure_pick(S) : true <- true. (p6)

+!continue(check) : true (p7)

<- !go(back); -pos(back, X, Y); +checking(slots); next(slot).

+!go(L) : pos(L, X, Y) & pos(r1, X, Y) (p8)

<- true.

+!go(L) : true (p9)

<- ?pos(L, X, Y); moveTowards(X, Y); !go(L).

15

A Simple Examples: Collecting Garbage

16

Agent r2

+garbage(r2) : true

<- burn(garb).

Jason
Part 2
• Others Jason Notions
• Semantics to communication
• Complete Jason Reasoning Cycle
• Other Simple Examples
• MAS Configuration File
• Conclusion

17

Others Jason Notions
• Belief annotation:

– blue(box1)[source(ag1)].
– red(box1)[source(percept)].
– colourblind(ag1)[source(self), doc(0.7)].
– lier(ag1)[source(self), doc(0.2)].

• The operator ‘~’ is used for strong negation:
+!leave(home) : not raining & not ~raining
 <- open(curtains); ...

18

Others Jason Notions
• Internal action:

.desire(literal)

.intend(literal)

.drop_desires(literal)

.drop_intentions(literal)
• Internal action for communication:

.send(receiver, ilf, predicate-content) where
ilf {tell, untell, achieve, unachieve,∈
 askOne, askAll, askHow, tellHow, untellHow, ...}

19

Semantics to communication

20

• The Knowledge Query and Manipulation Language
(KQML) is a language that adds intentional context:
• tell : S informs R that the sentence in the message content

is true of S;
• untell: the message content is not in the knowledge base

of S;
• achieve: S requests that R try to achieve a state of the

world where the message content is true;
• unachieve: S wants to revert the effect of an achieve

previously sent.
• http://

jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperfor
matives.html

http://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html
http://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html
http://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html
http://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html

21

MAS my_system {
 infrastructure: Jade
 environment: MyEnv
 ExecuctionControl: ...
 agents: ag1; ag2; ag3;
}

• Multiple instances of an agent

agents: ag1 #10;

MAS Configuration File

Conclusion

22

• Jason was implemented in Java by Rafael H. Bordini and Jomi F. Hübner,
with contributions from various colleagues.

• Research in the area of agent-oriented programming languages is still
incipient, so we expect much progress from research in the area.

• Jason is distributed completely on an “as is” basis.
• It has been developed during our spare time, we cannot guarantee

much support.
• If you have questions or bug reports, you are welcome to use the

mailing lists at SourceForge:
• jason-announcement@lists.sourceforge.net (where we announce

new releases and important news about Jason)
• jason-users@lists.sourceforge.net (for questions about using Jason)
• jason-bugs@lists.sourceforge.net (to report bugs)

