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Abstract
As empirically demonstrated by the Word Sense Disambiguation (WSD) tasks of the last Sen-

sEval/SemEval exercises, assigning the appropriate meaning to words in context has resisted all
attempts to be successfully addressed. Many authors argue that one possible reason could be the
use of inappropriate sets of word meanings. In particular, WordNet has been used as a de-facto
standard repository of word meanings in most of these tasks. Thus, instead of using the word
senses defined in WordNet, some approaches have derived semantic classes representing groups
of word senses. However, the meanings represented by WordNet have been only used for WSD
at a very fine-grained sense level or at a very coarse-grained semantic class level (also called Su-
perSenses). We suspect that an appropriate level of abstraction could be on between both levels.
The contributions of this paper are manifold. First, we propose a simple method to automatically
derive semantic classes at intermediate levels of abstraction covering all nominal and verbal Word-
Net meanings. Second, we empirically demonstrate that our automatically derived semantic classes
outperform classical approaches based on word senses and more coarse-grained sense groupings.
Third, we also demonstrate that our supervised WSD system benefits from using these new se-
mantic classes as additional semantic features while reducing the amount of training examples.
Finally, we also demonstrate the robustness of our supervised semantic class-based WSD system
when tested on out of domain corpus.

1. Introduction

Word Sense Disambiguation (WSD) is an intermediate Natural Language Processing (NLP) task
that consists in assigning the correct lexical interpretation to ambiguous words depending on the sur-
rounding context (Agirre & Edmonds, 2007; Navigli, 2009). One of the most successful approaches
in the last years is the supervised learning from examples, in which Machine Learning classification
models are induced from semantically annotated corpora (Màrquez, Escudero, Martı́nez, & Rigau,
2006). Quite often, machine learning systems have obtained better results than the knowledge-based
ones, as shown by experimental work and international evaluation exercises such as Senseval or Se-
mEval1. Nevertheless, lately some weakly supervised or knowledge–based approaches are reaching
a performance close to the supervised techniques on some specific tasks. In all these tasks, the

1. All the information about these competitions can be found at http://www.senseval.org.
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corpora are usually manually annotated by experts with word senses taken from a particular lexical
semantic resource, most commonly WordNet (Fellbaum, 1998).

However, WordNet has been widely criticized for being a sense repository that often provides
too fine–grained sense distinctions for higher level applications like Machine Translation (MT) or
Question & Answering (AQ). In fact, WSD at this low level of semantic granularity has resisted
all attempts of inferring robust broad-coverage models. It seems that many word–sense distinctions
are too subtle to be captured by automatic systems with the current small volumes of word–sense
annotated examples. Using WordNet as a sense repository, the organizers of the English all-words
task at SensEval-3 reported an inter-annotation agreement of 72.5% (Snyder & Palmer, 2004). In-
terestingly, this result is difficult to outperform by state-of-the-art sense-based WSD systems.

Moreover, supervised sense–based approaches are too biased towards the most frequent sense or
the predominant sense on the training data. Therefore, the performance of supervised sense–based
systems is strongly punished when applied to domain specific texts where the sense distribution dif-
fers considerably with respect to the sense distribution in the training corpora (Escudero, Màrquez,
& Rigau., 2000).

In this paper we try to overcome these problems by facing the task of WSD from a Semantic
Class point of view instead of the traditional word sense based approach. A semantic class can be
seen as an abstract concept that groups sub–concepts and word senses sharing some semantic prop-
erties or features. Examples of semantic classes are VEHICLE, FOOD or ANIMAL. Our hypothesis is
that using an appropriate set of semantic classes instead of word-senses could help WSD in several
aspects:

• A higher level of abstraction could ease the integration of WSD systems into other higher
level NLP applications such as Machine Translation or Question & Answering

• Grouping together semantically coherent sets of training examples could also increase the
robustness of supervised WSD systems

• The so–called bottleneck acquisition problem could also be alleviated

These points will be further explained along the paper. Following this hypothesis we propose to
create classifiers based on semantic classes instead of word sense experts. One semantic classifier
will be trained for each semantic class and the final system will assign the proper semantic class to
each ambiguous word (instead of the sense as in traditional approaches). For example, using our
automatically derived semantic classes (that will be introduced later), the three senses of church in
WordNet 1.6 are subsumed by the semantic classes RELIGIOUSORGANIZATION, BUILDING and
RELIGIOUSCEREMONY. Also note that these semantic classes still discriminate among the three
different senses of the word church. For instance, if we assign the semantic class BUILDING to
an occurrence of church in a context, we still know that it refers to its second sense. Additionally,
the semantic class BUILDING now covers more than six times more training examples than those
covered by the second sense of church.

An example of text from senseval–2 automatically annotated with semantic classes can be seen
in Figure 1. It shows the automatic annotations by our class–based classifiers with different se-
mantic classes. BLC stands for Basic Level Concepts2 (Izquierdo, Suarez, & Rigau, 2007), SS

2. We will use the following format throughout this paper to refer to a particular sense: wordnum
pos , where pos is the

part-of-speech: n for nouns, v for verbs, a for adjectives and r for adverbs, and num stands for the sense number.
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for SuperSenses (Ciaramita & Johnson, 2003), WND for WordNet Domains (Magnini & Cavaglià,
2000; L. Bentivogli & Pianta, 2004) and SUMO for Suggested Upper Merged Ontology (Niles &
Pease, 2001). Incorrect assignments are marked in italics. The correct tags are included between
brackets next to the automatic ones. Obviously, these semantic resources relate senses at different
level of abstraction using diverse semantic criteria and properties that could be of interest for sub-
sequent semantic processing. Moreover, their combination could improve the overall results since
they offer different semantic perspectives of the text.

Id Word BLC SS WND SUMO
1 An
2 ancient
3 stone artifact1n noun.artifact building Mineral
4 church building1n noun.artifact building Building
6 amid
7 the
8 fields geographic area1

n

[physical object1n]
noun.location
[noun.object]

factotum [geogra-
phy]

LandArea

9 ,
10 the
11 sound property2

n noun.attribute factotum [acous-
tics]

RadiatingSound
[SoundAttribute]

12 of
13 bells device1n noun.artifact factotum [acous-

tics]
MusicalInstrument

14 cascading move2v verb.motion factotum Motion
15 from
16 its
17 tower construction3n noun.artifact factotum Building
18 calling designate2v

[request2v]
verb.stative
[verb.communication]

factotum Communication
[Requesting]

19 the
20 faithful group1

n [so-
cial group1

n]
noun.group person [religion] Group

21 to
22 evensong time of day1n

[writing2
n]

noun.communication religion TimeInterval
[Text]

Table 1: Example of the automatic annotation of a text with several semantic class labels

The main goal of our research is to investigate the performance of alternative Semantic Classes
derived from WordNet on supervised WSD. First, we propose a system to automatically extract sets
of semantically coherent groupings from nominal and verbal senses from WordNet. The system
allows to generate arbitrary sets of semantic classes at distinct levels of abstraction. Second, we
also analyze its impact with respect to alternative Semantic Classes when performing class–based
WSD. Our empirical results show that our automatically generated classes performs better than
those created manually (WNDomains, SUMO, SuperSenses, etc.) while capturing more precise
information. Third, we also demonstrate that our supervised WSD system benefits from using
these new semantic classes as additional semantic features while reducing the amount of training
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examples. Finally, we show that our supervised class-based system can be adapted to a particular
domain. Traditional word sense based systems are also included only for comparison purposes.

Summarizing, our research empirically investigates:

• The performance of alternative semantic groupings when used in a supervised class-based
WSD system

• The impact of class-based semantic features in our supervised WSD framework

• The required amount of training examples needed by a class-based WSD in order to obtain
competitive results

• The relative performance of the class-based WSD systems with respect WSD based on word
experts

• The robustness of our class-based WSD system on specific domains

Moreover, when tested on out of domain dataset, our supervised class-based WSD system ob-
tains slightly better results than a state-of-the-art word sense based WSD system, the ItMakesSense
system presented by Zhong and Ng (2010).

After this introduction, we present the work directly related with our research on supervised
WSD based on semantic classes. Then, Section 3 presents the sense-groupings and semantic classes
used in this study. Section 4 explains our method to automatically derive semantic classes from
WordNet at different levels of abstraction. Moreover an analysis of different semantic groupings is
included. Section 5, presents the system that we have developed to perform supervised class-based
WSD. The performance of this system is shown in Section 6, where the system is tested on several
WSD datasets provided by international evaluations. A comparison with other participants on these
competitions is introduced in sections 7 and 8. Some experiments with our system applied to a
specific domain are analyzed in Section 9. Finally, some conclusions and future work are presented
in section 10.

2. Related Work

The field of WSD is very broad. There have been a large amount of publications about WSD over the
last 50 years. This section only revises some relevant WSD approaches dealing with the appropriate
sets of meanings a word should have.

Some research has been focused on deriving different word-sense groupings to overcome the
fine–grained distinctions of WordNet (Hearst & Schütze, 1993; Peters, Peters, & Vossen, 1998;
Mihalcea & Moldovan, 2001; Agirre & de Lacalle, 2003; Navigli, 2006; Snow, S., D., & A., 2007).
That is, they provide methods for grouping senses of the same word, thus producing coarser word
sense groupings. For example, for the word church having three senses in WordNet 1.6, the sense
grouping presented by Snow et al. (2007) only produces a unique grouping. That is, according to
this approach church is monosemous.

In the OntoNotes project (Hovy, Marcus, Palmer, Ramshaw, & Weischedel, 2006), the different
meanings of a word are considered as a kind of tree, ranging from coarse concepts on the root to
fine–grained meanings on the leaves. The merging was increased from fine to coarse grained until
obtaining an inter annotator agreement of around 90%. This coarse-grained repository was used
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in the WSD lexical sample task of SemEval-2007 (Pradhan, Dligach, & Palmer, 2007), where the
systems scored up to 88.7% F–score. Note that this merging was created for each word following a
manual and very costly process.

Similarly to the previous approach, another task was organized within SemEval-2007 which
consisted in the traditional WSD all word task using another coarse–grained sense repository derived
from WordNet (Navigli, Litkowski, & Hargraves, 2007). In this case all the WordNet synsets were
automatically linked to the Oxford Dictionary of English (ODE) using a graph algorithm. All the
meanings of a word linked to the same ODE entry were merged into a coarse sense. The systems
achieving the top scores followed supervised approaches taking advantage of different corpora for
the training, reaching a top F–score of 82.50%.

Both of the previous cases are aimed at solving the granularity problem of the word sense
definitions in WordNet. However, both approaches are still word experts (one classifier is trained
for each word). Obviously, decreasing the average polysemy of a word by using coarser–senses
makes easier the classification choice. As a result, the performance of these systems increase at the
cost of reducing its discriminative power.

Conversely, instead of word experts, our approach creates semantic class experts. Each of these
semantic classifiers can exploit diverse information extracted from all the meanings from different
words that belong to that class.

Wikipedia (Wikipedia, 2015) has been also recently used to overcome some problems of the su-
pervised learning methods: excessively fine–grained definition of meanings, lack of annotated data
and strong domain dependence of the existing annotated corpora. In this way, Wikipedia provides
a new source of annotated data, very large and constantly in expansion (Mihalcea, 2007; Gangemi,
Nuzzolese, Presutti, Draicchio, Musetti, & Ciancarini, 2012).

In contrast, some research has been focused on using predefined sets of sense-groupings for
learning class–based classifiers for WSD (Segond, Schiller, Greffenstette, & Chanod, 1997; Cia-
ramita & Johnson, 2003; Villarejo, Màrquez, & Rigau, 2005; Curran, 2005; Ciaramita & Altun,
2006; Izquierdo, Suárez, & Rigau, 2009). That is, grouping senses of different words into the same
explicit and comprehensive semantic class. Also the work presented by Mihalcea, Csomai, and
Ciaramita (2007) makes use of three different sets of semantic classes (WordNet classes and two
Named Entity annotated corpora) to train sequential classifiers. The classifiers are trained using
basic features, collocations and semantic features, and they reach a performance around 60% and
the 14th position in the SemEval-2007 all–words task.

The semantic classes of WordNet (also called SuperSenses) have been widely used in different
works. For instance, Paaß and Reichartz (2009a) apply Conditional Random Fields to model the
sequential context of words and their relation to SuperSenses. They also extend the model to include
the potential SuperSenses of each word into the training data. An F1 score of 82.8% is reported (both
nouns and verbs) when only potential labels are used (no training data at all) which is just 1% worse
than when using the training data with right labels. Although interesting, they only evaluate the
system applying a 5-fold cross validation on SemCor.

3. Semantic Classes and Levels of Abstraction

The meanings represented by WordNet have been only used for WSD at a very fine-grained sense
level or at a very coarse-grained semantic class level (also called SuperSenses). We suspect that an
appropriate level of abstraction could be found on between both levels. In this section we propose a
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simple method to automatically derive semantic classes at intermediate levels of abstraction cover-
ing all nominal and verbal WordNet meanings. First, we introduce WordNet, the semantic resource
and sense repository used by most WSD systems. Also note that all semantic classes used in our
work are also linked to WordNet.

WordNet (Fellbaum, 1998) is an online lexical database of English which contains concepts
represented by synsets, which are sets of synonyms of content words (nouns, verbs, adjectives and
adverbs). One synset groups together several senses of different words which are synonyms.

In WordNet different types of lexical and semantic relations interlink different synsets, creating
in this way a very large structured lexical and semantic network. The most important relation
encoded in WordNet is the subclass relation (for nouns is called hyponymy relation and for verbs
troponymy relation). Table 2 shows some basic figures of different WordNet versions including the
total number of words, polysemous words, synsets, senses (all the possible senses for all the words)
and average polysemy.

Version Words Polysemous Synsets Senses Avg. Polysemy
WN 1.6 121,962 23,255 99,642 173,941 2.91
WN 1.7 144,684 24,735 109,377 192,460 2.93
WN 1.7.1 146,350 25,944 111,223 195,817 2.86
WN 2.0 152,059 26,275 115,424 203,145 2.94
WN 2.1 155,327 27,006 117,597 207,016 2.89
WN 3.0 155,287 26,896 120,982 206,941 2.89

Table 2: Statistics of WordNet versions.

3.1 SuperSenses

SuperSenses is the name of the WordNet Lexicographer Files within the framework of WSD3. More
in detail, WordNet synsets are organized into forty five SuperSenses, based on syntactic categories
(nouns, verbs, adjectives and adverbs) and logical groupings such as PERSON, PHENOMENON,
FEELING, LOCATION, etc. There are 26 basic categories for nouns, 15 for verbs, 3 for adjectives
and 1 for adverbs. In some cases, different senses of a word can be grouped at a high level under
the same SuperSense, reducing the polysemy of the word. This is often the case of very similar
senses of a word. Having just a few classes for adjectives and adverbs, SuperSense taggers have
been usually developed only for nouns and verbs. (Tsvetkov, Schneider, Hovy, Bhatia, Faruqui, &
Dyer, 2014) presents a very interesting study on tagging adjectives with SuperSenses acquired from
GermaNet (Hamp, Feldweg, et al., 1997).

3.2 WordNet Domains

WordNet Domains4 (WND) (Magnini & Cavaglià, 2000; L. Bentivogli & Pianta, 2004) is a hierar-
chy of 165 domains which have been used to label semi-automatically all WordNet synsets. This
set of labels is organized into a taxonomy following the Dewey Decimal Classification System5.

3. More information of these SuperSenses can be found at http://wordnet.princeton.edu/wordnet/
man/lexnames.5WN.html.

4. http://wndomains.itc.it
5. http://www.oclc.org/dewey
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For building WND, many labels were assigned to high levels of the WordNet hierarchy and were
automatically inherited across the hypernym and troponym hierarchy. Thus, the semi-automatic
method6 used to develop this resource was not free of errors and inconsistencies (Castillo, Real, &
Rigau, 2004; González, Rigau, & Castillo, 2012).

Information brought by domain labels is complementary to what is already in WordNet. WND
present some characteristics that can be interesting for WSD. First of all, a domain label may contain
senses from different WordNet sub–hierarchies (derived from different SuperSenses). For instance,
the domain RELIGION contains senses such as priest, deriving from NOUN.PERSON and church,
deriving from NOUN.ARTIFACT. Second, a domain label may also include synsets of different
syntactic categories. For instance, the domain RELIGION also contains the verb pray or the adjective
holy.

Furthermore, a single WND label can subsume different senses of the same word, reducing in
this way its polysemy. For instance, the first and third senses of church in WordNet 1.6 have the
domain label RELIGION.

3.3 SUMO Concepts

SUMO7 (Niles & Pease, 2001) was created as part of the IEEE Standard Upper Ontology Working
Group. Their goal was to develop a standard upper ontology to promote data interoperability, infor-
mation search and retrieval, automated inference, and natural language processing. SUMO consists
of a set of concepts, relations, and axioms that formalize an upper ontology. For these experiments,
we used the complete WordNet 1.6 mapping with 1,019 SUMO labels (Niles & Pease, 2003). In this
case, the three noun senses of church in WordNet 1.6 are classified as RELIGIOUSORGANIZATION,
BUILDING and RELIGIOUSCEREMONY according to the SUMO ontology.

3.4 Example of Semantic Classes

As an example, table 3 presents the three senses and glosses of the word church in WordNet 1.6.

Sense WordNet 1.6
word senses gloss

1 church1n Christian church1n
Christianity2n

a group of Christians; any group professing
Christian doctrine or belief: church is a bibli-
cal term for assembly

2 church2n church building1n for public (especially Christian) worship: the
church was empty

3 church service1n church3n a service conducted in a church: don’t be late
for church

Table 3: Glosses and examples for the senses of churchn

In Table 4 we show the classes assigned to each sense according to the semantic resources intro-
duced previously. For instance, considering WordNet Domains, it can be observed that the senses
number 1 (group of Christians) and 3 (service conducted in a church) belong to the same domain

6. It was based on several cycles of manual checking over automatically labeled data.
7. http://www.ontologyportal.org
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RELIGION. On the contrary, SuperSenses and SUMO represent the three senses of church using
different semantic classes. Also note that the resulting assignment of semantic classes identifies
each word sense individually.

Sense
Semantic Class

SuperSense WND SUMO
1 NOUN.GROUP RELIGION RELIGIOUSORGANIZATION

2 NOUN.ARTIFACT BUILDINGS BUILDING

3 NOUN.ACT RELIGION RELIGIOUSCEREMONY

Table 4: Semantic Classes for the noun churchn

3.5 Levels of Abstraction

Basic Level Concepts (Rosch, 1977) (hereinafter BLC) are the result of a compromise between two
conflicting principles of characterization (general vs. specific):

• Represent as many concepts as possible

• Represent as many features as possible

As a result of this conflicting characterization, BLC typically should occur in the middle levels
of the semantic hierarchies.

The notion of Base Concepts (hereinafter BC) was introduced in EuroWordNet (Vossen, 1998).
BC are supposed to be the most important concepts in several language specific wordnets. This
importance can be measured in terms of two main criteria:

• A high position in the semantic hierarchy

• Having many relations to other concepts

In EuroWordNet a set of 1,024 concepts were selected and called Common Base Concepts.
Common BC are concepts that act as BC in at least two languages. Only local wordnets for English,
Dutch and Spanish were used to select this set of Common BC. In later initiatives, similar sets have
been derived to harmonize the construction of multilingual wordnets.

Considering both definitions, in the next section we present a method to automatically generate
different sets of Basic Level Concepts from WordNet at different levels of abstraction.

4. Automatic Selection of Basic Level Concepts

Several approaches have been developed trying to alleviate the fine granularity problem of WordNet
senses by obtaining word sense groupings (Hearst & Schütze, 1993; Peters et al., 1998; Mihalcea
& Moldovan, 2001; Agirre & de Lacalle, 2003; Navigli, 2006; Snow et al., 2007; Bhagwani, Sa-
tapathy, & Karnick, 2013). In most cases the approach consists on grouping different senses of
the same word, resulting in a decrease of the polysemy. Obviously, when the polysemy is reduced
the WSD task as a classification problem becomes easier, and a system using these coarse senses
obtain better results than other systems using word senses. Other works have used predefined sets
of semantic classes, mainly SuperSenses (Segond et al., 1997; Ciaramita & Johnson, 2003; Curran,

90



WORD VS. CLASS-BASED WORD SENSE DISAMBIGUATION

2005; Villarejo et al., 2005; Ciaramita & Altun, 2006; Picca, Gliozzo, & Ciaramita, 2008; Paaß &
Reichartz, 2009b; Tsvetkov et al., 2014).

In this section, we describe a simple method to automatically create different sets of Basic Level
Concepts from WordNet. The method exploits the nominal and verbal structure of WordNet. The
basic idea is that synsets in WordNet having a high number of relations are important, and they could
be candidates to be a BLC. To capture the relevance of a synset in WordNet we have considered two
options:

1. All: the total number of relations encoded in WordNet for the synset

2. Hypo: the total number of the hyponymy relations of the synset

Our method follows a bottom–up approach exploiting the hypernymy chains of WordNet. For
each synset, the process starts visiting the synsets in the hyperonymy chain and selecting (and
stopping the walk for this synset) as its BLC the ancestor having the first local maximum considering
the total number of relations (either All or Hypo)8. For synsets having more than one hyperonym, the
method chooses the one with the higher number of relations to continue the process. This process
ends with a preliminary set of candidate synsets selected as potential BLC.

Additionally, each synset selected as a potential BLC candidate must subsume (or represent) at
least a certain number of descendant synsets. Thus, the minimum number of synsets a BLC must
subsume is another parameter of the algorithm, and it is represented by the symbol λ. Candidate
BLCs that do not reach this threshold are discarded, and their subsumed synsets are reassigned to
other BLC candidate appearing in higher levels of abstraction.

Algorithm 1 presents the pseudo–code of the algorithm. The parameters of the algorithm are:
a WordNet resource, the type of relations considered (All or Hypo), and the minimum number
of concepts that must be subsumed by each BLC (λ). The algorithm has two phases. The first
one selects the candidate BLC, following the bottom–up approach. The second phase discards the
candidate BLC that do not satisfy the λ threshold.

Figure 1 shows a schema to illustrate the selection process. Each node represents a synset, and
the edges represent the hyperonymy relations (for instance, A is the hyperonym of D, and D is the
hyperonym of F). The number under each synset indicates its number of hyponymy relations.

The schema illustrates the selection process of BLC candidates for synset J using criterion Hypo.
The process starts checking the hyperonym of J, which is F. F has two hyperonyms, B and D. The
next synset visited in the hyperonymy chain of J is D since it has a higher number of hyponymy
relations (three). Again the algorithm compares the number of relations of the hyperonym synset (D
with three relations), with those from the previous synset (F with two). As the number is increasing
the process continues. Now, the next node to visit is A. As the number of relations of A is two and
the number for D is three, the process stops and the synset selected as BLC candidate for J is D.

Table 5 shows a real example of the selection process for the noun church in WordNet 1.6. The
hyperonym chain and the number of relations encoded in WordNet (All criterion) are shown for each
synset. The local maximum in the chain is marked in bold.

8. The algorithm starts by checking the first hyperonym of the synset, not the synset itself.
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Figure 1: Example of BLC selection

#rel. synset
18 group 1,grouping 1
19 social group 1
37 organisation 2,organization 1
10 establishment 2,institution 1
12 faith 3,religion 2

5 Christianity 2,church 1,Christian church 1
#rel. synset

14 entity 1,something 1
29 object 1,physical object 1
39 artifact 1,artefact 1
63 construction 3,structure 1
79 building 1,edifice 1
11 place of worship 1, ...
19 church 2,church building 1

#rel. synset
20 act 2,human action 1,human activity 1
69 activity 1

5 ceremony 3
11 religious ceremony 1,religious ritual 1

7 service 3,religious service 1,divine service 1
1 church 3,church service 1

Table 5: BLC selection for the noun church in WordNet 1.6
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Algorithm 1 BLC Extraction
Require: WordNet (WN) , typeOfRelation (T), threshold (λ)
BlcCandidates = Ø
for each {synset S ∈WN} do
cur := S
{Obtaining the hypernym chains for the current synset cur}
H := Hypernyms(WN, cur)
new := SynsetWithMoreRelations(WN,H, T )
{Iterating while the number of relations is increased}
while NumOfRels(WN,T, cur) < NumOfRels(WN,T, new) do
cur := new
H := Hypernyms(WN, cur)
new := SynsetWithMoreRelations(WN,H, T )

end while{Store cur as a candidate BLC}
BlcCandidates := BlcCandidates ∪ {cur}

end for
{Filtering out the BLC candidates}
BlcF inal = Ø
for each {blc ∈ BlcCandidates} do

if λ < NumberOfDescendants(WN, blc) then
BlcF inal := BlcF inal ∪ {blc}

end if
end for
return BlcF inal

Figure 2: Example of BLC selection for the sense 2 of church
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In figure 2 we can see a diagram showing a partial view of the selection process of a candidate
BLC for the sense number 2 of the noun church. The synset dotted is the synset that is being
processed (church2n). The synsets in bold are those that are visited by the algorithm, and the one
in gray (building1n) is the one selected as BLC for church2n. The process stops checking the synset
for structure1n as the number of relations is 63, which is lower than the number of relations of the
previous synset (79 relations for edifice1n).

Obviously, combining different values for the λ threshold (for example 0, 10, 20 or 50) and the
criterion considered by the algorithm (All or Hypo), the process ends up in different sets of BLC
extracted automatically from any WordNet version.

Furthermore, instead of the number of relations we can consider the frequency of the synsets
in a corpus as a measure of its importance. Synset frequency can be calculated as the sum of the
frequencies of the word senses contained in the synset, which can be obtained from SemCor (Miller,
Leacock, Tengi, & Bunker, 1993), or WordNet.

To sum up, the algorithm has two main parameters, the λ parameter, representing the mini-
mum number of synsets that each BLC must represent, and the criterion used for characterizing the
relevance of the synsets. The values for both parameters can be:

• λ parameter: any integer value greater or equal to 0

• Synset relevance parameter: the value considered to measure the importance of the synset.
Four possibilities:

– Number of relations of the synset

∗ All: all relations encoded for the synset
∗ Hypo: only hyponymy relations

– Frequency of the synset

∗ FreqWN: frequency obtained using WordNet
∗ FreqSC: frequency obtained using SemCor

An implementation of this algorithm and the different sets of BLC used in this paper for several
WordNet versions are freely available9.

4.1 Analysis of Basic Level Concepts

We have selected WordNet 1.6 to generate several sets of BLC, combining the four types of synset
relevance criteria and values 0, 10, 20 and 50 for λ. These values have been selected since they
represent different levels of abstraction, ranging from λ = 0 (no filtering) to λ = 50 (each BLC
must subsume at least 50 synsets). Table 6 shows, for combinations of λ and synset relevance
parameters, the number of concepts that each set of BLC contains, and the average depth on the
WordNet hierarchy of each group. In gray we highlight the two sets of BLC (BLC-20 and BLC-50
with “all relations” parameter) that we use through all the experiments described in this paper.

As expected, increasing the λ threshold has a direct effect on the number of BLC and on its
average depth in the WordNet hierarchy. In particular, both values are decreased, indicating that
when the λ threshold is increased, the concepts selected are more abstract and general. For instance,

9. http://adimen.si.ehu.es/web/BLC
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λ Threshold Synset Relevance # BLC Depth
Nouns Verbs Nouns Verbs

0

All 3,094 1,256 7.09 3.32
Hypo 2,490 1,041 7.09 3.31

FreqSC 34,865 3,070 7.44 3.41
FreqWN 34,183 2,615 7.44 3.30

10

All 971 719 6.20 1.39
Hypo 993 718 6.23 1.36

FreqSC 690 731 5.74 1.38
FreqWN 691 738 5.77 1.40

20

All 558 673 5.81 1.25
Hypo 558 672 5.80 1.21

FreqSC 339 659 5.43 1.22
FreqWN 340 667 5.47 1.23

50

All 253 633 5.21 1.13
Hypo 248 633 5.21 1.10

FreqSC 94 630 4.35 1.12
FreqWN 99 631 4.41 1.12

Table 6: Automatic Base Level Concepts for WN1.6

using (All) in the nominal part of WordNet, the number of concepts selected range from 3,094 with
no filtering (λ = 0) to 253 (λ = 50). However, on average, its depth reduction is not so acute since
it varies from 7.09 to 5.21. This fact shows the robustness of our method for selecting synsets from
an intermediate level of abstraction.

Also as expected, the verbal part of WordNet behave differently. In this case, since the verbal
hierarchies are less deep, the average depth of the synsets selected ranges from 3.32 to only 1.13
using All relations, and from 3.31 to 1.10 using Hypo relations.

In general, when using the frequency criteria, we can observe a similar behavior than when
using the relation criteria. However, now the effect of the threshold is more dramatic, specially for
nouns. Again, as expected, verbs behave differently than nouns. The number of BLC (for both
SemCor and WordNet frequencies) reaches a plateau of around 600. In fact, this number is very
close to the verbal top beginners of WordNet.

Summing up, we have devised a simple automatic procedure for deriving different sets of BLC
representing at a different level of abstraction the whole set of nominal and verbal synsets of Word-
Net. In the following section we show and explain the supervised framework developed for WSD
in order to exploit the semantic classes described in this section and the previous one.

5. Supervised Class-Based WSD

We follow a supervised machine learning approach to develop a set of semantic class based WSD
classifiers. Our systems use an implementation of a Support Vector Machine algorithm to train the
classifiers, one per semantic class, on semantic annotated corpora for acquiring both positive and
negative examples of each class. These classifiers are built on the basis of a set of features defined
for representing these examples. Being class-based, the training data must be collected and treated
in a pretty different way than in the usual word-based approach.
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First, word-based and class-based approaches selects the training examples very differently. In
the word-based approach, only instances of the same word can be used as training examples. Figure
3 shows the distribution of training examples used to generate a word sense classifier for the noun
house. Following the binary definition of SVM, one classifier is generated for each word sense. For
each of these classifiers, only occurrences of the word sense associated with the classifier can be
used as positive examples, while the rest of word sense occurrences are used as negative examples.

... house.n#1 ... ... house.n#2... ... house.n#1 ... ... house.n#2 ... ... house.n#3 ...

  Classifier

for sense#1

Classifier for HOUSE

  Classifier

for sense#2

  Classifier

for sense#3

Figure 3: Distribution of examples using a word-based approach

In a class-based approach, we can use all the examples from all the words that belong to a
particular semantic class. Figure 4 shows the distribution of examples in the class-based approach.
In this case, one classifier is created for each semantic class. All occurrences of words belonging
to the semantic class associated with the classifier can be used as positive examples, while the rest
of occurrences of word senses associated with a different semantic class are selected as negative
examples.

Obviously, in the class-based approach the number of examples for training is increased. Table
7 shows an example for sense church2n. Following a word-based approach only 58 examples can
be found in Semcor for church2n. Conversely, 371 positive training examples can be used when
building a classifier for the semantic class “building, edifice”.

We think that this approach has several advantages. First, semantic classes reduce the average
polysemy degree of words (some word senses might be grouped together within the same semantic
class). Moreover, the acquisition bottleneck problem in supervised machine learning algorithms is
attenuated because of the increase in the number of training examples. However, we are mixing
in one classifier examples from very different words. For instance, for the building class we are
grouping together examples from hotel, hospital or church, which could introduce noise in the
learning process when grouping unrelated word senses.

5.1 The Learning Algorithm: SVM

Support Vector Machines (SVM) have been proven to be robust and very competitive in many NLP
tasks, and in WSD in particular (Màrquez et al., 2006). In our experiments, we used SVM-Light
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Classifier for BUILDING

...house..

(BUILDING)

...hospital..

(BUILDING)

...dog...

(ANIMAL)
...cat...

(ANIMAL)

...star..

(PERSON)

Classifier for ANIMAL

Figure 4: Distribution of examples using a class-based approach

Classifier Examples # of positive examples
church2n (word-based approach) church2n 58

church2n 58
building1

n 48
building, edifice hotel1n 39
(class approach) hospital1n 20

barn1
n 17

....... ......
371 examples

Table 7: Number of examples in Semcor: word vs. class-based approaches
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implementation (Joachims, 1998). SVM are used to induce a hyperplane that separates the positive
from the negative examples with a maximum margin. It means that the hyperplane is located in an
intermediate position between positive and negative examples, trying to keep the maximum distance
to the closest positive example, and to the closest negative example. In some cases, it is not possible
to get a hyperplane that divides the space linearly, or it is better to allow some errors to obtain a more
efficient hyperplane. This is known as soft-margin SVM, and requires the estimation of a parameter
(C), that represents the trade-off allowed between training errors and the margin. We have set this
value to 0.01, which has been demonstrated as a good value for SVM in WSD tasks.

When classifying an example, we obtain the value of the output function for each SVM classifier
corresponding to each semantic class for the word example, and our system simply selects the class
having the greatest value.

5.2 Corpora

Three semantic annotated corpora have been used for training and testing. Semcor for training, and
SensEval-2 and SensEval-3 English all-words tasks, for testing.

SemCor (Miller et al., 1993) is a subset of the Brown Corpus plus the novel The Red Badge
of Courage, and it has been developed by the same group that created WordNet. It contains 253
texts and around 700,000 running words, and more than 200,000 are also lemmatized and sense-
tagged according to Princeton WordNet 1.6. The sense annotations from SemCor have been also
automatically ported to other WordNet versions10.

SensEval-211 English all-words corpus (hereinafter SE2) (Palmer, Fellbaum, Cotton, Delfs, &
Dang, 2001) consists of 5,000 words of text from three Wall Street Journal (WSJ) articles repre-
senting different domains from the Penn TreeBank II. The sense inventory used for tagging was
WordNet 1.7.

SensEval-312 English all-words corpus (hereinafter SE3) (Snyder & Palmer, 2004), is made up
of 5,000 words, extracted from two WSJ articles and one excerpt from the Brown Corpus. Sense
repository of WordNet 1.7.1 was used to tag 2,041 words with their proper senses.

We also considered alternative evaluation datasets. For instance, the SemEval-2007 coarse–
grained task corpus13. However, this dataset has been discarded because this corpus is annotated
with a particular set of word sense clusters. Additionally, it does not provide a clear and simple way
to compare orthogonal sets of clusterings. Although there have been more recent SensEval/SemEval
tasks about WSD, we think that for the purpose of this evaluation (different level of abstraction in
WSD), SensEval-2 and SensEval-3 are still the datasets that best fit to our purposes. More recent
SemEval competitions have been designed to address specific topics, such as multilinguality or joint
WSD and Named Entity Recognition. However, we have also make some additional experiments
on domain adaptation with the dataset provided by SemEval-10 task 17 ”All-words Word Sense
Disambiguation on a Specific Domain (WSD-domain)”14 (Agirre, López de Lacalle, Fellbaum,
Hsieh, Tesconi, Monachini, Vossen, & Segers, 2010).

10. http://web.eecs.umich.edu/˜mihalcea/downloads.html#semcor
11. http://www.sle.sharp.co.uk/senseval2
12. http://www.senseval.org/senseval3
13. Indeed we participated in this task with a preliminary version of our system
14. http://semeval2.fbk.eu/semeval2.php?location=tasks#T25
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5.3 Feature Types

Following previous contributions in supervised WSD, we have selected a set of basic features to
represent the training and testing examples. We also include additional features based on semantic
classes.

• Basic features

– Word-forms and lemmas in a window of 10 words around the target word.

– PoS, the concatenation of the preceding/following three and five PoS tags.

– Bigrams and trigrams formed by lemmas and word-forms in a window of 5 words
around the target word; we use all tokens regardless their PoS to build bi/trigrams. We
replace the target word by a character ‘X’ in these features to increase its generalization.

• Semantic features

– Most frequent semantic class for the target word, calculated over SemCor.

– Monosemous semantic class of monosemous words in a window of size five words
around the target word.

Basic features are those widely used in the literature, as the work presented by Yarowsky (1994).
These features are pieces of information that occur in the context of the target word: local features
including bigrams and trigrams (including the target word) of lemmas, word-forms or part–of–
speech labels (PoS). In addition, word–forms or lemmas in some larger window around the target
word are considered as features representing the topic of the discourse.

The set of features is extended with semantic information. Several types of semantic classes
have been considered to create these features. In particular, two different sets of BLC (BLC20 and
BLC5015), SuperSenses, WordNet Domains (WND) and SUMO.

In order to increase the generalization capabilities of the class-based classifiers we filter out
irrelevant features. We measure the relevance of a feature16 f for a class c in terms of the frequency
of f. For each class c, and for each feature f of that class, we calculate the frequency of the feature
within the class (the number of times that it occurs in examples of the class), and we also obtain
the total frequency of the feature for all the classes. We get the relative frequency by dividing
both values (classFreq / totalFreq) and if the result is lower than a certain threshold t, the feature is
removed from the feature list of the class c17. In this way, we make sure that the features selected
for a class are more frequently related with that class than with others. We set this threshold t to
0.25, obtained empirically with very preliminary versions of the classifiers when applying a cross-
validation setting on SemCor.

15. We have selected these set since they represent different levels of abstraction. As said in section 4, 20 and 50 refer to
the threshold of minimum number of synsets that a possible BLC must subsume to be considered as a proper BLC.
These sets of BLC were built using all criterion.

16. That is, the value of the feature, for example a feature type can be word-form, and a feature of that type can be
houses.

17. Depending on the experiment, around 30% of the original features are removed by this filter.
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6. Semantic Class–Based WSD Experiments

In this section we present the performance of our semantic class-based WSD system in the all–
words WSD SensEval-2 (SE2) and SensEval–3 (SE3) datasets. We want to analyze the behavior
of our class-based WSD system when working at different levels of abstraction. As we have said
before, the level of abstraction is defined by the semantic class used to build the classifiers.

An experiment is defined by two different parameters each one involving a particular set of
semantic classes.

1. Target class: The semantic classes used to train the classifiers (determining the abstraction
level of the system). In this case, we tested: word-sense18, BLC20, BLC50, WordNet Do-
mains (WND), SUMO and SuperSenses (SS).

2. Semantic features class: The semantic classes used for building the semantic features. In
this case, we tested: BLC20, BLC50, WND, SUMO and SuperSenses (SS).

The target class is the type of classes that the classifier assigns to a given ambiguous word. For
instance, the target class for the traditional word expert classifiers are word senses. The Semantic
feature class is the one used for building the semantic features, which is independent of the target
class. For instance, we can use WordNet Domains to extract monosemous words from the context
of the target word and use the WND labels of these words as semantic features for building the
classifier.

Combining different semantic classes for target and features, we generated the set of experi-
ments described in the next sections. In that way, we can evaluate independently the impact of
selecting one semantic class or another as target class or as semantic feature class.

Test PoS Sense BLC20 BLC50 SUMO SS WND

SE2 N 4.02 3.45 3.34 3.33 2.73 2.66
V 9.82 7.11 6.94 5.94 4.06 2.69

SE3 N 4.93 4.08 3.92 3.94 3.06 3.05
V 10.95 8.64 8.46 7.60 4.08 2.49

Table 8: Average polysemy on SE2 and SE3

Table 8 shows the average polysemy (AP) measured on SE2 and SE3 with respect to the dif-
ferent semantic classes used in our evaluation as target classes. As expected, every corpus behaves
differently and the average polysemy for verbs is higher than for nouns. Also as we could assume
in advance, relevant reductions on the polysemy degree are obtained when increasing the level of
abstraction. This fact is more acute also for verbs. Note the large reduction of polysemy for verbs
when using SuperSenses and also WND. Also note that a priori SE3 seems to be more difficult to
disambiguate than SE2, independently of its abstraction level.

6.1 Baselines

As baselines of these evaluations we define the most frequent classes (MFC) of each word calculated
over SemCor. Ties between classes on a specific word are solved obtaining the global frequency in

18. We included a word-based evaluation for comparison purposes only since the current system have been designed for
class-based evaluation.
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SemCor of each of these tied classes, and selecting the most frequent class over the whole training
corpus. When Semcor has no occurrences of a particular word (that is, we are not able to calculate
the most frequent class of the word), we compute the global frequency for each of its possible
semantic classes (obtained from WordNet) over SemCor, and we select the most frequent one. Table
9 shows the baseline for each semantic class over both testing corpora.

Class Pos SE2 SE3
MFC AP MFC AP

Sense N 70.02 4.02 72.30 4.93
V 44.75 9.82 52.88 10.95

BLC20 N 75.71 3.45 76.29 4.08
V 55.13 7.11 58.82 8.64

BLC50 N 76.65 3.34 76.64 3.92
V 54.93 6.94 60.05 8.46

SUMO N 76.09 3.33 79.55 3.94
V 60.35 5.94 64.71 7.60

SuperSense N 80.41 2.73 81.50 3.06
V 68.47 4.06 79.07 4.08

WND N 86.11 2.66 83.82 3.05
V 90.33 2.69 92.20 2.49

Table 9: Most Frequent Class baselines and average polysemy (AP) on SE2 and SE3

As expected, the performances of the MFC baselines are very high. In particular, those corre-
sponding to nouns (ranging from 70% to 80%). While nominal baselines seem to perform similarly
in both SE2 and SE3, verbal baselines appear to be consistently much lower for SE2 than for SE3.
In SE2, verbal baselines range from 44% to 68% while in SE3 verbal baselines range from 52% to
79%. The results of WND are very high due to its low polysemy degree for both nouns and verbs.
Obviously, when increasing the level of abstraction (from senses to WND) the results also increase.

6.2 Results of Our Basic System

In this section we present the performance of our supervised semantic class–based WSD system.
Table 10 shows the results of the system when trained varying the target classes and using only
the basic feature set. Their values correspond to the F1 measures (harmonic mean of recall and
precision) when training our systems on SemCor and testing on SE2 and SE3 test sets. The results
that improve the baselines are shown in italics. Additionally, those results showing a statistically
significant positive difference when compared with its corresponding baseline using McNemar’s
test are marked in bold.

Interestingly, only the basic system at a word-sense level outperforms the baselines in SE2 and
SE3 for both nouns and verbs. In addition, our systems obtain in some cases significantly better
results for verbs. Also interesting is that on verbs at a word-sense level the baselines and results are
very different, while at a class-level the differences on both datasets are much smaller.

As expected, the results of the systems increase when augmenting the level of abstraction (from
senses to WND), and in most cases, the baseline results are reached or outperformed. This is even
more relevant if we consider that the baseline results are already quite high. However, at a very high
level of abstraction (SuperSenses or WND) our basic systems seem to be unable to outperform the
baselines.
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Class Pos SE2 SE3

Sense N 71.20 73.15
V 45.53 57.02

BLC20 N 75.52 73.82
V 57.06 61.10

BLC50 N 74.57 75.84
V 58.03 61.97

SUMO N 77.60 76.74
V 62.09 66.21

SuperSense N 79.94 79.48
V 71.95 78.39

WND N 80.81 77.64
V 90.14 88.92

Table 10: Results of the basic system trained on SemCor with a basic set of features and evaluated
against SE2 and SE3

In general, the results obtained by BLC20 are not so different to those of BLC50. For instance,
if we consider the number of classes within BLC20 (558 classes), BLC50 (253 classes) and Super-
Sense (24 classes), BLC classifiers obtain high performance rates while maintaining much higher
expressive power than SuperSenses (they are able to classify among much larger number of classes).
In fact, using SuperSenses (40 classes for nouns and verbs) we obtain a very accurate semantic tag-
ger with a performance close to 80%. Even more interesting, we could use BLC20 for tagging
nouns (558 semantic classes and F1 around 75%) and SuperSenses for verbs (14 semantic classes
and F1 around 75%).

6.3 Results Exploiting the Semantic Features

One of our main goals is to prove that simple semantic features added to the training process are
capable of producing significant improvements against the basic systems. The results of the exper-
iments considering also the different types of semantic features are presented in Tables 11 and 12,
respectively for nouns and verbs.

In both tables, the column labeled as Class refers to what we have called the target class, and
the column labeled as SF indicates the type of semantic features included to represent the examples
within our machine learning approach.

Again, the values in the tables correspond to the F1 measures (harmonic mean of recall and
precision) when training our systems on SemCor and testing on SE2 and SE3 test sets. The results
improving the baselines appear in italics. Additionally, those results showing a statistically signif-
icant positive difference when compared with its corresponding baseline using the McNemar’s test
are marked in bold.

Regarding nouns (see Table 11), a very different behavior is observed for SE2 and SE3. Adding
semantic features mainly improves the results on SE2. While for SE3 none of the systems present
a significant improvement over the baselines, for SE2 such improvement is obtained when using
several types of semantic features (in particular, when using WND features on SE2). The use of
semantic class-based features seems to improve the systems using as target classes intermediate
levels of abstraction (specially BLC20 and BLC50). Interestingly, in SE3 only BLC20 and BLC50
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Class SF SE2 SE3 Class SF SE2 SE3

Sense

baseline 70.02 72.30

SUMO

baseline 76.09 79.55
basicFeat 71.20 73.15 basicFeat 77.60 76.74
BLC20 71.79 73.15 BLC20 75.52 76.74
BLC50 71.69 73.04 BLC50 75.52 77.19
SUMO 71.59 73.15 SUMO 77.88 78.76

SS 71.10 72.70 SS 77.50 76.97
WND 71.20 73.15 WND 77.88 77.42

BLC20

baseline 75.75 76.29

SS

baseline 80.41 81.50
basicFeat 75.52 73.82 basicFeat 79.94 79.48
BLC20 77.69 76.52 BLC20 81.07 81.39
BLC50 77.79 75.73 BLC50 80.22 81.73
SUMO 77.60 73.71 SUMO 80.51 81.05

SS 75.14 73.82 SS 80.32 76.46
WND 77.88 74.24 WND 82.47 79.82

BLC50

baseline 76.65 76.74

WND

baseline 86.11 83.82
basicFeat 74.57 75.84 basicFeat 80.81 77.64
BLC20 78.45 76.85 BLC20 81.85 80.79
BLC50 76.65 76.74 BLC50 82.33 80.11
SUMO 79.58 75.51 SUMO 83.55 81.24

SS 75.52 74.61 SS 83.08 78.31
WND 78.92 74.83 WND 86.01 83.71

Table 11: Results for nouns using the extended system

seem to provide some improvements over the baselines in some of the target classes (for instance,
BLC20, BLC50 and SS), although not significant.

Regarding verbs (see Table 12), also a very different behavior is observed for SE2 and SE3. In
this case, we can observe almost the opposite effect than for nouns. On SE3 most of the semantic
class features improve the results obtained by the baselines. While for SE2 only some of the systems
present a significant improvement over the baselines, for SE3 such improvement is obtained when
using several types of semantic features. However, in this case we also obtain significantly better
results for several semantic features on SE2. The use of semantic class-based features seems to
benefit lower levels of abstraction (specially word-sense, BLC20, BLC50 and also SUMO).

In general, the results show that using semantic features in addition to the basic features helps to
reach a better performance for the class-based WSD systems. Additionally, it also seems that using
these semantic features we are able to obtain very competitive classifiers at a sense level.

6.4 Learning Curves

We also investigate the behavior of the class-based WSD system with respect the number of training
examples. Although the same experiments have been carried out for nouns and verbs, we only
include the results for nouns since in both cases, the trend is very similar.

In these experiment, the Semcor files have been randomly selected and added to the training
corpus in order to generate subsets of 5%, 10%, 15%, etc. of the training corpus19. Then, we train

19. Each portion contains also the same files than the previous portion. For example, all files in the 25% portion are also
contained in the 30% portion.
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Class SF SE2 SE3 Class SF SE2 SE3

Sense

baseline 44.75 52.88

SUMO

baseline 60.35 64.71
basicFeat 45.53 57.02 basicFeat 62.09 66.21
BLC20 45.14 56.61 BLC20 61.12 66.07
BLC50 45.53 56.47 BLC50 62.09 66.48
SUMO 45.73 57.02 SUMO 60.74 64.98

SS 45.34 56.75 SS 59.96 64.71
WND 45.53 56.75 WND 61.51 66.35

BLC20

baseline 55.13 58.82

SS

baseline 68.47 79.07
basicFeat 57.06 61.10 basicFeat 71.95 78.39
BLC20 56.87 59.92 BLC20 69.25 77.70
BLC50 55.90 60.60 BLC50 69.25 77.70
SUMO 57.06 61.15 SUMO 70.21 77.70

SS 56.29 61.29 SS 69.25 77.84
WND 58.61 60.88 WND 71.76 79.75

BLC50

baseline 54.93 60.05

WND

baseline 90.33 92.20
basicFeat 58.03 61.97 basicFeat 90.14 88.92
BLC20 57.45 61.29 BLC20 90.14 90.42
BLC50 56.67 61.01 BLC50 90.14 90.15
SUMO 57.06 61.83 SUMO 90.52 89.88

SS 57.45 61.83 SS 89.75 88.78
WND 59.77 62.38 WND 90.52 92.20

Table 12: Results for verbs using the extended system

the system on each of the training portions and we test the system on SE2 and SE3. Finally, we also
compare the resulting system with the baseline computed over the same training portion.

Figures 5 and 6 present the learning curves over SE2 and SE3, respectively. In this case, we
selected a BLC20 class-based WSD system using WordNet Domains as semantic features20.

Surprisingly, in SE2 the system only improves the F1 measure around 2% while increasing the
training corpus from 25% to 100% of SemCor. In SE3, the system again only improves the F1
measure around 3% while increasing the training corpus from 30% to 100% of SemCor. That is,
most of the knowledge required for the class-based WSD system seems to be already present on a
small part of SemCor.

Figures 7 and 8 present the learning curves over SE2 and SE3, respectively, of a class-based
WSD system based on SuperSenses using as semantic features those built with WordNet Domains.

In SE2 the system just improves the F1 measure around 2% while increasing the training corpus
from 25% to 100% of SemCor. In SE3, the system again only improves the F1 measure around 2%
while increasing the training corpus from 30% to 100% of SemCor. That is, with only 25% of the
whole corpus, the class-based WSD system reaches a F1 close to the performance using all corpus.

In SE2 ans SE3, when using BLC20 (Figures 5 and 6) or SuperSenses (Figures 7 and 8) as
semantic classes for WSD, the behavior of the system is similar to the MFC baseline. This is very
interesting since the MFC obtains very high results due to the way it is defined: the MFC over the
total corpus is assigned if there are no occurrences of the word in the training corpus. Without this
definition, there would be a large number of words in the test set with no occurrences when using

20. As shown in previous experiments, this combination obtains a very good performance.
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Figure 5: Learning curve of BLC20 classifier on SE2
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Figure 6: Learning curve of BLC20 classifier on SE3
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Figure 7: Learning curve of SuperSense classifier on SE2
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Figure 8: Learning curve of SuperSense classifier on SE3
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small training portions. In these cases, the recall of the baselines (and in turn F1) would be much
lower.

This evaluation seems to indicate that the class-based approach to WSD reduces considerably
the required amount of training examples.

7. Comparison with SensEval Systems: Sense Level

The main goal of the experiments included in this section is to verify whether the abstraction level
of our class-based systems maintains its discriminative power when evaluated at a sense level. Ad-
ditionally, we compare our results against the results of the top participant systems in SE2 and SE3
which provided the best sense–level outputs. Thus, our class-based systems have been adapted fol-
lowing a simple protocol. The output based on semantic classes is converted to sense identifiers:
instead of the semantic class produced by our systems for a particular instance, we select the first
sense of the word according to the WordNet sense ranking belonging to the predicted semantic class.
So, first we obtain the semantic class by means of our classifiers, then we obtain the restricted set of
senses for the word that match the semantic class obtained, and then we choose the most frequent
sense from that restricted subset.

The results of the first experiment on SE2 data are shown in Table 13. All our systems have the
prefix ”SVM-” while the suffix denotes the type of semantic class used to generate the classifier21.
In all cases in these experiments, WND has been selected as target semantic class to generate the
semantic features. Two baselines marked in Italics have been also included. The first sense in Word-
Net (base-WordNet) and the most frequent sense in SemCor (base-SemCor). In fact, the developers
of WordNet ranked their word senses using SemCor and other sense-annotated corpora. Thus, the
frequencies and ranks appearing in SemCor and in WordNet are similar, but not equal. We also
include the results of our system when working at a word level (SVM-sense).

In both cases, for nouns and verbs, our systems outperform the most frequent baselines. The
most frequent sense for a word, according to the WordNet sense ranking is very competitive in
WSD tasks, and it is extremely hard to improve upon even slightly (McCarthy, Koeling, Weeds,
& Carroll, 2004). As expected, the behavior of the different semantic features produces slightly
different results. However, independently of the semantic features used, in SE2 at a sense level, the
class-based systems rank at the third position.

Table 14 shows the same experiment but using SE3 dataset. In this case, our class-based systems
clearly outperform the baselines, achieving the best results for nouns and the second place for verbs.
Interestingly, for nouns, the best system at the SE3 did not achieve the SemCor baseline. Also recall
that SE3 seems to be more difficult than SE2.

It is worth to mention that our class-based systems use the same features for both nouns and
verbs. For instance, we do not take profit of complex feature sets encoding syntactic information
that seems to be important for verbs.

These experiments show that class-based classifiers seem to be quite competitive when evalu-
ated at a word sense level. They perform over the most frequent sense according to WordNet and
SemCor, and achieve the higher position for nouns and the second for verbs in SE3, and the third
position for nouns and verbs in SE2. Obviously, this indicates that class-based WSD maintains a
very high discriminative power at a word sense level.

21. For instance, SVM-BLC20 stands for the experiment that creates classifier considering BLC20 semantic classes.
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Class→ Sense on SE2
Nouns Verbs

System F1 System F1
SMUam 73.80 SMUaw 52.70
AVe-Antwerp 74.40 AVe-antwerp 47.90
SVM-semBLC20 71.80 SVM-semSUMO 45.70
SVM-semBLC50 71.70 SVM-sense 45.53
SVM-semSUMO 71.60 SVM-semWND 45.50
SVM-semWND 71.20 SVM-semBLC50 45.50
SVM-sense 71.20 SVM-semSS 45.30
SVM-semSS 71.10 SVM-semBLC20 45.10
base-WordNet 70.10 LIA-Sinequa 44.80
base-SemCor 70.00 base-SemCor 44.80
LIA-Sinequa 70.00 base-WordNet 43.80

Table 13: Class to Sense results on SE2. Class to word sense transformation.

Class→ Sense on SE3
Nouns Verbs

System F1 System F1
SVM-semWND 73.20 GAMBL-AW 59.30
SVM-semBLC20 73.20 SVM-semSUMO 57.00
SVM-semSUMO 73.20 SVM-semWND 56.80
SVM.sense 73.15 SVM-semSS 56.80
SVM-semBLC50 73.00 SVM-sense 56.75
SVM-semSS 72.70 SVM-semBLC20 56.60
base-SemCor 72.30 SVM-semBLC50 56.50
GAMBL-AW 70.80 UNTaw 56.40
base-WordNet 70.70 Meaning-allwords 55.20
kuaw 70.60 kuaw 54.50
UNTaw 69.60 R2D2 54.40
Meaning-allwords 69.40 base-SemCor 52.90
LCCaw 69.30 base-WordNet 52.80

Table 14: Class to Sense results on SE3. Class to word sense transformation.
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8. Comparison with SensEval Systems: Class Level

The experiments presented in this section explore the performance of the word-based classifiers
participating at SE2 and SE3 when are evaluated at a class level. To perform this kind of evaluation,
the word sense output of the participant systems have been mapped to its corresponding semantic
classes. Our class-based systems are not modified. Obviously, we expect different performances
of the systems depending on the semantic class level. Considering the results presented in tables
11 and 12, in order to perform the comparison, we have selected the experiments that use WND to
build the semantic features22. Thus, our system results using the different target semantic classes
are all represented by SVM-semWND.

Table 15 presents ordered by F1-measure the results of the best performing systems on SE2 data
when evaluated at a different levels of abstraction. As previously, in italics we include the most
frequent senses according to WordNet base-WordNet and SemCor base-SemCor.

On SE2, independently of the abstraction level and PoS, our system (SVM-semWND) scores
at the first positions of the ranking. In one case our system reaches the best position, and twice
the second one. The baselines are outperformed in all experiments, except for nouns using WND,
where base–SemCor is very high.

Table 16 presents ordered by F1-measure the results of the best performing systems on SE3 data
when evaluated at a different levels of abstraction. In italics we include the most frequent senses
according to WordNet base-WordNet and SemCor base-SemCor. Our systems are again represented
by SVM-semWND.

On SE3, we can see that our system performs better than the baselines in most cases, except for
the SemCor–based baseline on nouns, which obtains a very high result. In particular, our system
obtains very good results on verbs, reaching the first or second best positions in all cases, and
outperforming both baselines in all cases.

To sum up, our class–based approach outperforms most SensEval participants (both SE2 and
SE3), at sense level and at semantic class level. This suggests that the good performance of the
semantic classifiers are not only due to the polysemy reduction. Actually, it confirms that our
class–based semantic classifiers are learning from the semantic class training examples at different
abstraction levels.

9. Out of Domain Evaluation

In this section we describe our system at the SemEval-2 “All–words Word Sense Disambiguation
on a Specific Domain” task (Izquierdo, Suárez, & Rigau, 2010). The aim of this evaluation is to
show how robust our semantic class approach is when tested on a specific domain, different to the
domain of the training material.

Traditionally, SensEval competitions have been focused on general domain texts. Thus, domain
specific texts present fresh challenges for WSD. For example, specific domains reduce the possi-
ble meaning of a word in a given context. Moreover, the distribution of word senses on the data
examples changes when compared to general domains. These problems affect both supervised and
knowledge–based systems. In fact, supervised word-based WSD systems are very sensitive to the
corpora used for training and testing the system (Escudero et al., 2000).

22. Remind that the semantic features are the most frequent class of the target word, and the semantic class of monose-
mous words in the context around target word.
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Nouns Verbs
System F1 System F1

Sense→ BLC20
SMUaw 78.72 SMUaw 61.22
SVM-semWND 77.88 SVM-semWND 58.61
AVe-antwerp 76.71 LIA-Sinequa 57.42
base-SemCor 75.71 AVe-antwerp 57.28
base-WordNet 74.29 base-SemCor 55.13
LIA-Sinequa 73.39 base-WordNet 54.16

Sense→ BLC50
SMUaw 79.01 SMUaw 61.61
SVM-semWND 78.92 SVM-semWND 59.77
AVe-antwerp 77.57 LIA-Sinequa 57.81
base-SemCor 76.65 AVe-Antwerp 57.67
base-WordNet 75.24 base-SemCor 54.93
LIA-Sinequa 74.53 base-WordNet 54.55

Sense→ SUMO
SMUaw 79.30 SMUaw 68.22
SVM-semWND 77.88 LIA-Sinequa 64.79
base-SemCor 76.09 AVe-Antwerp 62.56
AVe-Antwerp 75.94 SVM-semWND 61.51
LIA-Sinequa 74.92 base-SemCor 61.33
base-WordNet 71.74 base-WordNet 60.35

Sense→ SuperSense
SVM-semWND 82.47 SMUaw 73.47
SMUaw 81.21 LIA-Sinequa 72.74
AVe-Antwerp 80.75 SVM-semWND 71.76
base-SemCor 80.41 AVe-Antwerp 69.31
LIA-Sinequa 79.58 base-WordNet 69.05
base-WordNet 78.16 base-SemCor 68.47

Sense→WND
SMUaw 88.80 SMUaw 91.16
base-SemCor 86.11 SVM-semWND 90.52
SVM-semWND 86.01 base-SemCor 90.33
AVe-Antwerp 87.30 LIA-Sinequa 89.82
base-WordNet 85.82 base-WordNet 89.75
LIA-Sinequa 84.85 AVe-Antwerp 89.74

Table 15: Results for sense to BLC20, BLC50, SUMO, SuperSense and WND semantic classes on
SE2
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Nouns Verbs
System F1 System F1

Sense→ BLC20
base-SemCor 76.29 GAMBL-AW 63.56
GAMBL-AW 74.77 SVM-semWND 60.88
kuaw 74.69 kuaw 60.66
LCCaw 74.44 R2D2 59.79
UNTaw 74.40 UNTaw 59.73
SVM-semWND 74.24 Meaning-allwords 59.37
base-WordNet 74.16 base-SemCor 58.82
Meaning-allwords 73.11 base-WordNet 58.28

Sense→ BLC50
base-SemCor 76.74 GAMBL-AW 64.38
GAMBL-AW 75.56 SVM-semWND 62.38
kuaw 75.25 kuaw 61.22
SVM-semWND 74.83 R2D2 60.35
LCCaw 74.78 UNTaw 60.27
UNTaw 74.73 Meaning-allwords 60.19
base-WordNet 74.49 base-SemCor 60.06
R2D2 73.93 base-WordNet 58.82

Sense→ SUMO
base-SemCor 79.55 GAMBL-AW 68.77
kuaw 78.18 SVM-semWND 66.35
LCCaw 77.54 UNTaw 66.03
SVM-semWND 77.42 kuaw 65.93
UNTaw 77.32 Meaning-allwords 65.43
GAMBL-AW 77.14 upv-eaw2 64.92
base-WordNet 76.97 base-SemCor 64.71
Meaning-allwords 76.75 base-WordNet 64.02

Sense→ SuperSense
base-SemCor 81.50 SVM-semWND 79.75
kuaw 79.89 GAMBL-AW 79.40
SVM-semWND 79.82 base-SemCor 79.07
UNTaw 79.71 base-WordNet 78.25
GAMBL-AW 79.62 Meaning-allwords 78.14
upv-eaw2 79.27 Meaning-simple 77.72
upv-eaw 78.42 kuaw 77.53
base-WordNet 78.25 upv-eaw2 77.21

Sense→WND
base-SemCor 83.80 SVM-semWND 92.20
SVM-semWND 83.71 base-SemCor 92.20
UNTaw 83.62 UNTaw 91.37
kuaw 81.78 GAMBL-AW 91.01
GAMBL-AW 81.53 base-WordNet 90.83
base-WordNet 81.46 R2D2 90.52
LCCaw 80.64 Meaning-simple 90.50
Meaning-allwords 80.50 kuaw 90.44

Table 16: Results for sense to BLC20, BLC50, SUMO, SuperSense and WND semantic classes on
SE3
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Therefore, the main challenge is how to develop specific domain WSD systems or how to adapt
a general system to a particular domain. Following this research line, a task was proposed within the
SemEval–2 competition: “All–words Word Sense Disambiguation on a Specific Domain” (Agirre
et al., 2010). The restricted domain selected for this task was the environmental domain. The test
corpora consist of three texts compiled by the European Center for Nature Conservation23 (ECNC)
and World Wildlife Forum24 (WWF). The task was proposed in several languages: Chinese, Dutch,
English an Italian, although our participation was limited to English. More in detail, there were
a total of 1,032 noun tokens and 366 verb tokens to be tagged. Moreover, a set of background
documents related with the environmental domain were provided. These texts were no sense tagged,
they were just plain text, and they were also provided by ECNC and WWF. They could be used by
the systems to help to the adaptation to the specific domain. For English, there were a total of 113
background documents, containing 2,737,202 words.

We do not apply any kind of specific domain adaptation technique to our supervised class–based
system. In order to adapt our supervised system to the environmental domain we just increase auto-
matically the training data with new training examples from the domain. To acquire these examples,
we use the 113 background documents of the environmental domain provided by the organizers. We
use TreeTagger (Schmid, 1994) to preprocess the documents, performing PoS–tagging and lemmati-
zation. Since the background documents are not semantically annotated, and our supervised system
needs labeled data, we have selected only the monosemous instances occurring in the documents
according to our BLC20 semantic classes25. Note that this approach can only be exploited by class-
based WSD systems. In this way, we have obtained automatically a large set of examples annotated
with BLC20. This semantic class was selected because it provided very good results in previous
experiments. In order to analyze how the same approach and system would work with other level of
abstraction, we performed the same evaluation a posteriori using BLC50, WordNet Domains and
SuperSenses besides to BLC20, which was the official participation in SemEval-2. Nevertheless,
this section will be focused on BLC20.

Regarding BLC20, Table 17 presents the total number of training examples extracted from Sem-
Cor (SC) and from the background documents (BG). As expected, by this method a large number
of monosemous examples can be obtained for nouns and verbs, although, verbs are much less pro-
ductive than nouns. However, all these background examples correspond to a reduced set of 7,646
monosemous words.

Nouns Verbs N+V
SC 87,978 48,267 136,245
BG 193,536 10,821 204,357

Total 281,514 59,088 340,602

Table 17: Number of training examples for BLC20

Table 18 lists the ten most frequent monosemous nouns and verbs occurring in the background
documents. Remember that all these examples are monosemous according to BLC20 semantic
classes.

23. http://www.ecnc.org
24. http://wwf.org
25. BLC20 (see section 4) stands for Basic Level Concepts obtained with all relations criterion and a minimum threshold

of sub–concepts subsumed equal to 20.
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Nouns Verbs
Lemma # ex. Lemma # ex.

1 biodiversity 7,476 monitor 788
2 habitat 7,206 achieve 784
3 specie 7,067 target 484
4 climate 3,539 select 345
5 european 2,818 enable 334
6 ecosystem 2,669 seem 287
7 river 2,420 pine 281
8 grassland 2,303 evaluate 246
9 datum 2,276 explore 200

10 directive 2,197 believe 172

Table 18: Most frequent monosemous words in the background documents

Nouns Verbs N+V
SC 87,978 48,267 136,245
BG 116,912 7,019 123,931

Total 204,890 55,286 260,176

Table 19: Number of training examples for word senses

Our approach applies the same semantic class architecture shown in the previous sections, but
using examples extracted from the background documents. In this case, the semantic class used to
extract the examples and generate the classifiers is BLC2026. We select a simple feature set widely
used in many WSD systems. In particular, we use a window of five tokens around the target word
to extract word forms, lemmas; bigrams and trigrams of word forms and lemmas; trigrams of PoS
tags, and also the most frequent BLC20 semantic class of the target word in the training corpus.

To analyze the contribution of the monosemous examples in the performance of the system three
experiments we have defined:

• BLC20–SC: only training examples extracted from SemCor

• BLC20–BG: only monosemous examples extracted from the background data

• BLC20–SCBG: training examples extracted from SemCor and monosemous background data

The first run (BLC20–SC) aims to show the behavior of a supervised system trained on a general
corpus, and tested in a specific domain. The second one (BLC20–BG) analyzes the contribution of
the monosemous examples extracted from the background data. Finally, the third run (BLC20-
SCBG) studies the robustness of the approach when combining the training examples from SemCor
and the automatic ones obtained from the background documents.

Table 20 summarizes ordered by recall the official results of the participants in the English
WSD domain specific task of SemEval–2. In this table, Type refers to the approach followed by
the corresponding system: Weakly Supervised (WS), Supervised (S) or KB (Knowledge Based,
unsupervised). We only participate with the system using BLC20 as semantic class (the BLC20–
SC/BG/SCBG runs). The word–based classifiers (labeled Sense–BG, Sense-SC and Sense–SCBG)

26. In this case we use the set of BLCs from WordNet3.0, because also this version of WN was the one used in the
annotation.
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have been included after the evaluation campaign. Finally, as we mentioned in the introduction,
we have also included the performance of ItMakesSense system, which is one of the best perform-
ing WSD systems, on this same task for comparison purposes (it is the row on the table called
ItMakesSense in Italics).

Rank System ID Type P R
1 CFILT–2 WS 0.570 0.555
2 CFILT–1 WS 0.554 0.540
3 IIITH1-d.1.ppr.05 WS 0.534 0.528
4 IIITH2-d.2.ppr.05 WS 0.522 0.516
5 BLC20–SCBG S 0.513 0.513
- ItMakesSense S 0.510 0.510
6 BLC20–SC S 0.505 0.505
- Most Frequent Sense - 0.505 0.505
7 CFILT–3 KB 0.512 0.495
8 Treematch KB 0.506 0.493
9 Treematch2 KB 0.504 0.491

10 Sense–SCBG S 0.498 0.484
11 Sense–SC S 0.498 0.484
. . . . . . . . . . . . . . .
25 BLC20–BG S 0.380 0.380
. . . . . . . . . . . . . . .
- Random baseline - 0.232 0.232

32 Sense–BG S 0.045 0.001

Table 20: Precision and Recall of SemEval–2 participants. ItMakesSense results are included for
comparison purpose only

In general, the results reported by SemEval for this task were quite low. The best system only
achieved a precision of 0.570, and the most frequent baseline reached a precision of 0.505. This
fact shows that the domain adaptation of WSD systems is a very difficult task.

Analyzing the results of our three runs at SemEval, our worst result is obtained by the system
using only the monosemous background examples (BLC20–BG). This system ranks 23rd27 with a
Precision and Recall of 0.380 (0.385 for nouns and 0.366 for verbs). The system using only SemCor
(BLC20–SC) ranks 6th with Precision and Recall of 0.505 (0.527 for nouns and 0.443 for verbs).
This is also the performance of the first sense baseline. As expected, the best result of our three
runs is obtained when combining the examples from SemCor and the background (BLC20–SCBG).
This supervised system obtains the 5th position with a Precision and Recall of 0.513 (0.534 for
nouns, 0.454 for verbs) which is slightly above the baseline. Actually, this version of the system
obtains slightly better results than the best performing supervised system (ItMakesSense). Also note
that we could include automatically monosemous examples from the background test thanks to the
class-based nature of the WSD system.

Moreover, our system is the only one completely supervised participating in the task. The orga-
nizers calculated the recall with a confidence interval of 95% using bootstrap re-sampling procedure
(Noreen, 1989). This method of estimation might be more strict than other pairwise methods. It
reveals that the differences between the four first systems and our system (BLC20–SCBG) are not

27. In the table it appears in the 25th position due to we have included the word–based classifier results.
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statistically significant. As can be seen in Figure 9, there is overlapping between the recall con-
fidence interval of the four first systems and our system (ranking the 5th), which proves that the
differences are not statistically significant28.

Figure 9: Recall confidence intervals.

Possibly, the reason of low performance of the BCL20–BG system is the high correlation be-
tween the features of the target word and its semantic class. In this case, these features correspond
to the monosemous word while later are evaluated over polysemous words, with all kind of fea-
tures. However, it also seems that class-based systems are robust enough to incorporate large sets
of monosemous examples from a domain text. In fact, to our knowledge, this is the first time that
a supervised WSD algorithm has been successfully adapted to a specific domain. Furthermore,
our system trained only on SemCor also achieves a good performance, reaching the most frequent
baseline, showing the robustness of class-based WSD approaches to domain variations.

Comparing to word–based classifiers, it seems that our BLC20 classes contribute in two main
aspects. First, using the same set of features, the class–based classifiers obtain better results than
word–based ones. The classifiers built with BLC20 are more robust and domain adaptable than
word–based approaches. Second, the experiment that uses only examples extracted from back-
ground data considering word senses (Sense-BG) obtain an accuracy very close to zero, while the
same experiment but using BLC20 semantic classes (BLC20–BG) reaches an accuracy of 0.380.
This fact indicates that BLCs are useful to extract good training examples from unlabeled data. As
mentioned previously, in order to obtain a better insight, after the evaluation campaign we performed
the same evaluation with our system using other semantic classes which represent different levels
of abstractions: BLC50, WordNet Domains and SuperSenses. Table 21 shows the precision (P)
and recall (R)29 of our evaluation considering different training datasets (SemCor only, Background
documents only and both SemCor and Background documents: SC, BG and SC+BG respectively)
and different semantic classes.

As can be seen in Table 21, BLC20 leads to a better performance when using the three different
corpora for training (BG, SC and SCBG). When training only with monosemous examples extracted
from the background documents, BLC20 obtains the best result, which may indicate that its level
of abstraction is more adequate than any other, including WND or SS, which are sets much smaller
and with a much lower polysemy. The same effect can be drawn from the results when training
with SemCor and the monosemous examples from the background (SCBG). the best results are
obtained with BLC20, and together with SuperSenses are the only two semantic classes that seem

28. This figure has been taken directly from the overview paper of the task.
29. These figures have been obtained using the official scorer script and the official gold key, without any modification.
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System ID Type P R
BLC20–SCBG S 0.513 0.513

ItMakesSense S 0.510 0.510
BLC20–SC S 0.505 0.505

Most Frequent Sense S 0.505 0.505
WND–SC S 0.495 0.495

Sense–SCBG S 0.498 0.484
Sense–SC S 0.498 0.484
SS-SCBG S 0.484 0.484

BLC50–SCBG S 0.481 0.481
BLC50–SC S 0.481 0.481

SS–SC S 0.472 0.457
WN–SCBG S 0.471 0.471
BLC20–BG S 0.380 0.380

WND–BG S 0.362 0.362
SS–BG S 0.348 0.348

BLC50–BG S 0.277 0.277
Random baseline - 0.232 0.232

Table 21: Results of our experiments according to different semantic classes

to benefit from the background monosemous examples. These results seem to confirm the potential
capabilities of BLC20 to provide an adequate level of abstraction to perform class-based WSD.

Finally, we have proved that our system performs at the same level of one state-of-the-art sys-
tem30, the ItMakesSense system (Zhong & Ng, 2010). Considering that the set of features of our
system is quite simple, and that we do not apply any machine learning optimization nor feature
engineering, our results show that the use of Semantic Classes provides a very robust behavior on
specific domains, reaching state-of-the-art results.

10. Concluding Remarks

Word sense disambiguation is a difficult task as empirically has been demonstrated by all SensE-
val/SemEval exercises. One reason of such difficulties could be the use of inappropriate sets of
word meanings. While WordNet is the de-facto standard repository of meanings, several attempts
have been made grouping its senses in order to achieve higher levels of accuracy. Moreover, this
approach tries to ease the hard task of creating large enough sets of annotated data per domain and
language to train supervised systems. A possible solution would be to use for manual annotation se-
mantic class labels instead of fine-grained word senses (Schneider, Mohit, Oflazer, & Smith, 2012;
Schneider, Mohit, Dyer, Oflazer, & Smith, 2013).

Several attempts have been made to obtain word sense groupings to alleviate the problem of the
too fine granularity of word senses, most widely using WordNet senses. In most cases the approach
consists in grouping different senses of the same word, resulting in a decrease of the polysemy,
while reducing its discriminative capacity. Other works use predefined sets of semantic classes to
be integrated directly in a WSD system, mainly SuperSenses.

30. This has been tested offline, as the ItMakesSense system did not participate in the task. We downloaded the last
version of the software from http://www.comp.nus.edu.sg/˜nlp/software.html.
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In this work we describe a simple method to automatically select Basic Level Concepts from
WordNet. Based on very simple structural properties of WordNet, our method automatically selects
different sets of BLC representing different levels of abstraction.

The aim of this work is to explore on several all–words WSD tasks the performance of different
levels of abstraction provided by Basic Level Concepts, WordNet Domains, SUMO and SuperSense
labels. Furthermore, our study empirically demonstrates that:

a) these word sense groupings cluster senses into a coherent level of abstraction in order to
perform supervised class–based WSD while not harming its performance,

b) these semantic classes can be successfully used as semantic features to boost the performance
of these classifiers,

c) the class–based approach to WSD reduces dramatically the required amount of training ex-
amples to obtain competitive classifiers,

d) the class–based approach obtains competitive performances compared with word-based sys-
tems,

e) the class–based approach outperforms word–based systems when evaluated at class level,

f) the robustness of our class-based WSD system when performing out of domain evaluation,

g) our system reaches results comparable to a state-of-the-art system (ItMakesSense) when
tested on a specific domain.

In general, class–based disambiguation of nouns and verbs achieves better results than most of
the word–based systems presented in both SensEval2 and SensEval3. We also showed that the class-
based approach reduces considerably the required amount of training examples. In order to prove
that such type of disambiguation is possible and accurate we have ranked the class-based systems
together with the SensEval2 and Senseval3 official results. In order to establish a fair comparison
we mapped when necessary word senses to semantic classes and viceversa.

Some experiments have been designed to use our class–based classifiers to perform word–sense
disambiguation. It has been shown that a very simple approach of selecting the first sense in Word-
Net that corresponds to the class selected by the classifiers performs as well as the top systems at
SensEval2 and SensEval3.

Additional experiments have been carried out to compare the word–based systems to perform
class–based disambiguation. In this case we translated the official system outputs to its correspond-
ing semantic classes.

Different experiments have been performed using different levels of abstraction, ranging from
SuperSenses (a very small set) to SUMO (which has over 1,000 labels linked to WordNet1.6 senses),
WordNet Domains (with 163 labels), or Basic Level Concepts (with an arbitrary number of classes
depending on the abstraction level selected).

With some expected differences between SensEval2 and SensEval3 results, most of the class–
based systems outperform the baselines both for nouns and verbs. Specially for nouns, class-based
systems outperforms most of the SensEval2 and SensEval3 systems. In general, the results obtained
by SVM-semBLC20 are not very different to the results of SVM-semBLC50. Thus, we can select
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a medium level of abstraction, without having a significant decrease of the performance. Consider-
ing the number of classes, BLC classifiers obtain high performance rates while maintaining much
higher expressiveness than SuperSenses. However, using SuperSenses (40 classes) we can obtain
a very accurate semantic tagger with performances around 80%. Even better, we can use BLC20
for tagging nouns (558 semantic classes and F1 over 75%) and SuperSenses for verbs (14 semantic
classes and F1 around 75%).

Our systems at SemEval–2 “All-words Word Sense Disambiguation on a Specific Domain” task
proved that simple features exploiting BLC can perform as well as more sophisticated methods.
Comparing with word–based classifiers, we see that our BLC20 classes contribute in two main
aspects: the class–based classifiers obtain better results than word–based ones and semantic classes
contribute effectively to those results. This fact indicates that, in particular, BLC20 are useful to
extract monosemous training examples from unlabeled domain data.

Our next goal is to exploit the inconsistencies of the different labeling provided by the different
class-based classifiers in order to obtain a more robust and accurate class-based WSD system. The
main idea is to study why several classifiers, each one based on a different degree of abstraction (e.g.
BLC20, BLC50, WordNet Domains, etc.) label a concrete context or example with incompatible
tags. In this manner, we would be able to predict when to apply the best classifier depending on the
context.
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