

German Rigau i Claramunt
german.rigau@ehu.es
IXA group
Departamento de Lenguajes y Sistemas Informáticos
UPV/EHU

# **Automatic Reasoning**

# **Outline**

- We assume A because it explains B ...
- Abduction is inference to the best explanation
- Has applications to diagnosis, plan recognition, natural language understanding, vision, and many other tasks.
- It is frequently formalized as constructing a set of assumptions that logically imply and therefore "explain" a set of observations.
- The process of finding the best explanation from a set of observations
- First used by C. S. Pierce (1955)

- Abductive reasoning starts when an inquirer considers a set of seemingly unrelated facts, armed with the intuition that they are somehow connected
- Abduction is the process of inference that produces a hypothesis
  - Formation of plausible hypothesis
  - Selection of the best one

- Given:
  - Backgound knowledge KB
  - Observations O
- Find:
  - Hypothesis H <u>such that</u>
    - KB U H // ⊥
    - KB U H ⊢ O
- Multiple hypothesis H!
  - That explain O given KB
  - Usually depends on
    - the <u>size</u> (or <u>simplicity</u>) of H
    - the <u>coherence</u> of H (selects H that maximally connects O)

- Abduction or Inference to the Best Explanation is a form of inference that follows a pattern like this:
  - D is a collection of data (facts, observations, givens),
  - H explains D (would, if true, explain D),
  - No other hypothesis explains D as well as H does.

\_\_\_\_\_

Therefore, H is probably correct.

 Extreme example of abduction from Eugene Ionesco's play "Rhinoceros" from the "Theater of the Absurd" school:

- All cats die.
- Socrates is dead.
- Therefore, Socrates is a cat.

- Textual Entailment (Recognizing Textual Entailment task, RTE)
  - T entails H, H is a consequent of T, T ⇒ H
    - Directional relationship between a coherent text T and H
    - If the meaning of H, as interpreted in the context of T, can be inferred from the meaning of T, as would typically be interpreted by people
  - T: Peter brings his car to the garage for repair
  - H: Peter's car is damaged
  - T ⇒ H
  - T: Corrosion caused intermittent electrical contact
  - H: Corrosion prevented continuous electrical contact
  - T ⇒ H
  - T: Marlowe opened the refrigerator
  - H: Marlowe was hungry
  - T⇒H

- The strength of an abductive conclusion will in general depend on several factors, including:
  - how good H is by itself
    - independently of considering the alternatives
  - how decisively H surpasses the alternatives
  - how exhaustive the search was for alternative explanations, and
  - pragmatic considerations, including
    - the costs of being wrong and the benefits of being right,
    - how strong the need is to come to a conclusion at all, especially considering the possibility of seeking further evidence before deciding.

- FOL based approaches to abduction
  - Determine the set of assumptions sufficient to deduce the observations
    - Unable to reason under uncertainty
    - Unable to estimate the likelihood of alternative explanations
- Bayesian Networks
  - KB is encoded as a directed graph
  - Given O probabilistic inference over the graph is done to compute the posterior probability of alternative explanations
    - Essentially Propositional Logic
    - Cannot handle structured representations
- Weighted abduction, TACITUS (Hobbs et al. 1993)
  - Finds the lowest weight explanation
  - No solid theoretical basis

- Abduction using Markov Logic Networks (MLN)
  - (Kate & Mooney 2009)
  - Markov Logic Networks (Richarson & Domingos 2006)
  - Alchemy !
    - http://alchemy.cs.washington.edu/
  - Traditional FOL can be seen as hard constraints (0% vs. 100%)
  - MLN assigns a weight to each formula
  - The weight reflects how strong a constraint is
  - MLN is inherently deductive
  - MLN do not directly support abductive inference

```
rained ⇒ grass_is_wet
sprinkler_was_on ⇒ grass_is_wet
```

Observations:

```
grass_is_wet
```

Adding reverse implications

```
grass_is_wet ⇒ rained
grass_is_wet ⇒ sprinkler_was_on
```

Abductive inference by deduction ...

```
sprinkler_was_on ~> grass_is_wet ~> rained (!)
```

Both cannot be true ...

```
grass_is_wet ⇒ ¬ rained ∨ ¬ sprinkler_was_on
```

```
\forall X \, \forall Y (mosquito(X) \land infected(X,malaria) \land bite(X,Y) \Rightarrow infected(Y,malaria))
```

∀X ∀Y(infected(X,malaria)∧transfuse(blood,X,Y)⇒infected(Y,malaria))

Observations:

infected(john, malaria)
transfuse(blood, mary, john)

- MLNs do not directly support abductive inference
- In MLNs we need to explicitly include clauses with reverse implications

```
\forall X \forall Y (mosquito(X) \land infected(X, malaria) \land bite(X,Y) \Rightarrow infected(Y, malaria))
Reverse implication:
\forall Y (infected(Y,malaria) \Rightarrow \exists X (mosquito(X) \land infected(X,malaria) \land bite(X,Y))
\forall X \forall Y (infected(X,malaria) \land transfuse(blood,X,Y) \Rightarrow infected(Y,malaria))
Reverse implication:
\forall Y (infected(Y,malaria) \Rightarrow \exists X (infected(X,malaria) \land transfuse(blood,X,Y))
If Y is infected with malaria then at least one of the possible explanations
must be true:
∀Y(infected(Y,malaria)⇒
(\exists X(mosquito(X) \land infected(X,malaria) \land bite(X,Y))) \lor
(\exists X(infected(X,malaria) \land transfuse(blood,X,Y))))
But both explanations cannot be true:
\forall Y(infected(Y,malaria) \Rightarrow
\neg(\existsX(mosquito(X)\landinfected(X,malaria)\landbite(X,Y)))\lor
```

Abductive Reasoning 14

 $\neg$ ( $\exists$ X(infected(X,malaria) $\land$ transfuse(blood,X,Y))))

- The Boston office called.
- There is an office "in" Boston (city)
- Somebody (person) works for/at the office
- The "in" relation can be expressed by a compound nominal
- An organization can play the role of the persons working for it



German Rigau i Claramunt
german.rigau@ehu.es
IXA group
Departamento de Lenguajes y Sistemas Informáticos
UPV/EHU